The effects of brain-derived neurotrophic factor (BDNF) in long-term synaptic potentiation (LTP) are thought to underlie learning and memory formation and are partly mediated by local protein synthesis. Here, we investigated the mechanisms that mediate BDNF-induced alterations in the synaptic proteome that are coupled to synaptic strengthening. BDNF induced the synaptic accumulation of GluN2B-containing NMDA receptors (NMDARs) and increased the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSCs) in cultured rat hippocampal neurons by a mechanism requiring activation of the protein tyrosine kinase Pyk2 and dependent on cellular protein synthesis. Single-particle tracking using quantum dot imaging revealed that the increase in the abundance of synaptic NMDAR currents correlated with their enhanced stability in the synaptic compartment. Furthermore, BDNF increased the local synthesis of Pyk2 at the synapse, and the observed increase in Pyk2 protein abundance along dendrites of cultured hippocampal neurons was mediated by a mechanism dependent on the ribonucleoprotein hnRNP K, which bound to Pyk2 mRNA and dissociated from it upon BDNF application. Knocking down hnRNP K reduced the BDNF-induced synaptic synthesis of Pyk2 protein, whereas its overexpression enhanced it. Together, these findings indicate that hnRNP K mediates the synaptic distribution of Pyk2 synthesis, and hence the synaptic incorporation of GluN2B-containing NMDARs, induced by BDNF, which may affect LTP and synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.