Maintenance of both normal epithelial tissues and their malignant counterparts is supported by the host tissue stroma. The tumor stroma mainly consists of the basement membrane, fibroblasts, extracellular matrix, immune cells, and vasculature. Although most host cells in the stroma possess certain tumor-suppressing abilities, the stroma will change during malignancy and eventually promote growth, invasion, and metastasis. Stromal changes at the invasion front include the appearance of carcinoma-associated fibroblasts (CAFs). CAFs constitute a major portion of the reactive tumor stroma and play a crucial role in tumor progression. The main precursors of CAFs are normal fibroblasts, and the transdifferentiation of fibroblasts to CAFs is driven to a great extent by cancer-derived cytokines such as transforming growth factor-β. During recent years, the crosstalk between the cancer cells and the tumor stroma, highly responsible for the progression of tumors and their metastasis, has been increasingly unveiled. A better understanding of the host stroma contribution to cancer progression will increase our knowledge about the growth promoting signaling pathways and hopefully lead to novel therapeutic interventions targeting the tumor stroma. This review reports novel data on the essential crosstalk between cancer cells and cells of the tumor stroma, with an emphasis on the role played by CAFs. Furthermore, it presents recent literature on relevant tumor stroma- and CAF-related research in non-small cell lung cancer.
In addition to malignant neoplastic cells, cancer tissues also include immune cells, fibroblasts, and endothelial cells, including an abundant collection of growth factors, proangiogenic mediators, cytokines, chemokines, and components of the extracellular matrix. The main physiological function of the immune cells is to monitor tissue homeostasis, to protect against invading pathogens, and to eliminate transformed or damaged cells. Between immune cells and malignant cells in the tumor stroma, there is in fact a complex interaction which has significant prognostic relevance as the immune system has both tumor-promoting and -inhibiting roles. In non-small cell lung cancer (NSCLC), there is a marked infiltration of different types of immune cells, and the distribution, tissue localization, and cell types are significantly associated with progression and survival. Cancer immunotherapy has seen a significant progress during the last decade. An increased understanding of the mechanisms by which lung cancer cells escape the immune system, and the recognition of the key tumor antigens and immune system components in tumor ignorance have led to the development of several lung cancer vaccines. As the NSCLC prognosis in general is dismal, one may hope that future immunotherapy may be an effective adjunct to standard therapy, reversing immunologic tolerance in the tumor microenvironment. This review reports on the tumor stroma and in particular tumor-suppressing and -promoting roles of the immune system. Furthermore, it presents recent literature on relevant immune cell-related research in NSCLC.
Introduction The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. Areas Covered This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Expert opinion Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations
The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.