BackgroundTo date, the majority of protein-based radiopharmaceuticals have been radiolabelled using non-site-specific conjugation methods, with little or no control to ensure retained protein function post-labelling. The incorporation of a hexahistidine sequence (His-tag) in a recombinant protein can be used to site-specifically radiolabel with 99mTc-tricarbonyl ([99mTc(CO)3]+). This chemistry has been made accessible via a technetium tricarbonyl kit; however, reports of radiolabelling efficiencies and specific activities have varied greatly from one protein to another. Here, we aim to optimise the technetium tricarbonyl radiolabelling method to produce consistently >95% radiolabelling efficiencies with high specific activities suitable for in vivo imaging.MethodsFour different recombinant His-tagged proteins (recombinant complement receptor 2 (rCR2) and three single chain antibodies, α-CD33 scFv, α-VCAM-1 scFv and α-PSMA scFv), were used to study the effect of kit volume, ionic strength, pH and temperature on radiolabelling of four proteins.ResultsWe used 260 and 350 μL [99mTc(CO)3]+ kits enabling us to radiolabel at higher [99mTc(CO)3]+ and protein concentrations in a smaller volume and thus increase the rate at which maximum labelling efficiency and specific activity were reached. We also demonstrated that increasing the ionic strength of the reaction medium by increasing [Na+] from 0.25 to 0.63 M significantly increases the rate at which all four proteins reach a >95% labelling efficiency by at least fourfold, as compared to the conventional IsoLink® kit (Covidien, Petten, The Netherlands) and 0.25 M [Na+].ConclusionWe have found optimised kit and protein radiolabelling conditions suitable for the reproducible, fast, efficient radiolabelling of proteins without the need for post-labelling purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.