OpenStreetMap (OSM) is a collaborative project collecting geographical data of the entire world. The level of detail of OSM data and its data quality vary much across different regions and domains. In order to analyse such variations it is often necessary to research the history and evolution of the OSM data. The OpenStreetMap History Database (OSHDB) is a new data analysis tool for spatio-temporal geographical vector data. It is specifically optimized for working with OSM history data on a global scale and allows one to investigate the data evolution and user contributions in a flexible way. Benefits of the OSHDB are for example: to facilitate accessing OSM history data as a research subject and to assess the quality of OSM data by using intrinsic measures. This article describes the requirements of such a system and the resulting technical implementation of the OSHDB: the OSHDB data model and its application programming interface.
This paper examines OpenStreetMap data quality at different stages of a participatory mapping process in seven slums in Africa and Asia. Data were drawn from an OpenStreetMap-based participatory mapping process developed as part of a research project focusing on understanding inequalities in healthcare access of slum residents in the Global South. Descriptive statistics and qualitative analysis were employed to examine the following research question: What is the spatial data quality of collaborative remote mapping achieved by volunteer mappers in morphologically complex urban areas? Findings show that the completeness achieved by remote mapping largely depends on the morphology and characteristics of slums such as building density and rooftop architecture, varying from 84% in the best case, to zero in the most difficult site. The major scientific contribution of this study is to provide evidence on the spatial data quality of remotely mapped data through volunteer mapping efforts in morphologically complex urban areas such as slums; the results could provide insights into how much fieldwork would be needed in what level of complexity and to what extent the involvement of local volunteers in these efforts is required.
Many methods for intrinsic quality assessment of spatial data are based on the OpenStreetMap full-history dump. Typically, the high-level analysis is conducted; few approaches take into account the low-level properties of data files. In this chapter, a low-level data-type analysis is introduced. It offers a novel framework for the overview of big data files and assessment of full-history data provenance (lineage). Developed tools generate tables and charts, which facilitate the comparison and analysis of datasets. Also, resulting data helped to develop a universal data model for optimal storing of OpenStreetMap full-history data in the form of a relational database. Databases for several pilot sites were evaluated by two use cases. First, a number of intrinsic data quality indicators and related metrics were implemented. Second, a framework for the inventory of spatial distribution of massive data uploads is discussed. Both use cases confirm the effectiveness of the proposed data-type analysis and derived relational data model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.