Associated vibrations in mechanical power transmission elements such as gears and bearings significantly contribute to the dynamic behavior of the system to which they belong. Most research in this field describes measurements and signal processing methods to determine the effect of some design modifications. However, the number of investigations that try to solve the problem from the design stage is much smaller. The following study presents a review of the trends in the analysis of vibrations of power transmission elements and their relationship to the use of systematic design methodologies in the principal power transmission elements. A revision is shown in design considerations to prevent mechanical vibrations or reduce them to acceptable levels. The effects in terms of improvement in reducing vibrations of the most important works that have taken into account the vibrations in design stages are shown. The results show the importance of considering the mechanical vibrations in the design of power transmission elements. Moreover, the analysis of the state of the art shows the areas to be investigated that contemplate the development or application of formal design methodologies that take into account mechanical vibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.