Formation evaluation using cased-hole logs is a primary option for re-evaluating old wells in brownfields or contingency logging in new wells. Its consistency with a robust open hole evaluation is vital for its future implementation in field development. This work describes detailed open- and cased- hole evaluation workflows integrating different advanced subsurface measurements and alternative interpretation techniques to reduce the uncertainties of deriving the main petrophysical properties across the conventional and tight gas reservoirs in the Dnieper-Donets basin. Since not all open-hole measurements can be recorded behind casing and some of the cased hole logs are not characterized for open hole conditions, it is not always possible to implement the same evaluation techniques for measurements done in open hole and cased hole. Nevertheless, different measurements provide different formation responses that supplement their gaps from one another. A wireline data acquisition strategy has been elaborated to carry out formation evaluation workflows using open- and cased-hole data independently but learning from each other. The methodology is based on novel and non-standard evaluation techniques that use measurements from advanced wireline technology such as nuclear magnetic resonance (NMR) and advanced pulsed neutron spectroscopy logs. The methodology was applied to log data recorded on the Visean and Serpukhovian (Lower Carboniferous) productive gas zones, characterized by porosity (5-15pu) and permeability (0.1-100mD). The principal challenge for the formation evaluation of these reservoirs is deriving an accurate estimation of porosity, which requires removing the gas and matrix effects on the log responses. An inaccurate porosity estimation will result in an inaccurate permeability and water saturation, and the problem worsens in low-porosity rocks. In the open hole, the porosity computation from the Density-Magnetic Resonance (DMR) technique has proven to be more accurate in comparison with common single porosity methods. The same problem is addressed in cased hole conditions with the advanced pulsed neutron spectroscopy logs and a novel technique that combines the thermal neutron elastic scattering and fast neutron cross sections to obtain a gas-free and matrix-corrected porosity, as well as a resistivity independent gas saturation. The consistency of petrophysical properties independently estimated from the two separate workflows add confidence to the approach, and this is reflected in the gas production obtained from the perforated intervals. This script describes in detail the open- and cased- hole formation evaluation workflows and the wireline technology and methodologies applied. Actual examples illustrate the effectiveness of these quantitative approaches in the Dnieper-Donets basin.
The Sakhalin Field is located in the Dnieper-Donets Basin, east of Ukraine, and has been producing 7.7 billion cubic meters of natural gas in place from carboniferous rocks since the 1980s. Notwithstanding, it is strongly believed that significant untapped resources remain in the field, specifically those classified as tight intervals. Advances in wireline logging technology have brought, besides better accuracy on measurements behind the casing, a new measurement called fast neutron cross-section (FNXS), which has proved to be sensitive enough to the volume of gas in low-porosity formations. This enabled a quantitative interpretation for a better understanding of where these additional resources may lie in the Sakhalin Field. The methodology is based on advanced pulsed neutron spectroscopy logs to assess the essential formation properties such as lithology, porosity, and gas saturation and reduce the evaluation uncertainty in potential tight gas intervals. The advanced technology combines measurements from multiple detectors that represent independent formation properties such as formation sigma, thermal neutron porosity, FNXS, and elemental fractions. To address the lithology, the tool measures directly the rock elements required to determine representative mineralogy and matrix properties, which in turn are used to compensate for the matrix effects and obtain a reliable porosity and gas volume estimation. The methodology was tested on the upper Visean productive zones (Mississippian epoch) characterized by its low porosity (<10 pu) and permeability (<10 mD). In the past, those intervals have been overlooked because of inconclusive petrophysical interpretation based on basic openhole logs and their low production in some areas of the field. The necessity to finding new reserves has motivated the re-evaluation of possible bypassed tight-gas intervals by logging of mature wells behind casing in different sectors of the field. Advanced pulsed neutron spectroscopy logging behind casing uniquely identifies reserves in tight-gas intervals where basic open-hole interpretations were ambiguous. The gas production obtained from the perforated intervals supports the formation evaluation parameters estimated from the standalone interpretation of the pulsed neutron data. This work describes in detail the application of the alternative methodology and interpretation workflow to evaluate the formation through the casing. A concrete example is presented to illustrate the effectiveness of this approach in the revealing and development of tight gas reservoirs in mature fields in the Dnieper-Donets Basin.
An alternative technique to evaluate layered formations through casing in the Golfo San Jorge basin in Argentina is presented. The proposed methodology is based on pulsed neutron spectroscopy logs to assess the lithology and evaluate the hydrocarbon type and potential using resistivity-independent methods. The basin's layered reservoirs present multiple challenges for resistivity-based methods, including low and variable formation water salinity, intricate pore systems affecting the rock electrical parameters, fine sediments with high irreducible water content suppressing the resistivity response, and high-resistivity tuffaceous sands not associated with hydrocarbons. In cased holes, simple correlations of resistivity and capture cross-section (sigma) or other techniques emulating openhole logs from basic pulsed neutron logs (PNL) can be used for interwell correlations, but are frequently inconclusive for assessing hydrocarbon potential. Our approach takes advantage of latest-generation PNL tools’ multiple measurements to reduce the uncertainty of water saturation assessment. The proposed methodology was tested with two new-generation PNL tools, which feature high-resolution detectors that provide elemental concentrations for better understanding mineralogy including direct measurement of the carbon concentration for a reliable estimation of total organic carbon (TOC), which is directly associated with the oil volume in the pore space. The first tool was originally intended for openhole logging and has a single large detector for high-quality spectroscopy analysis. The second device is a multiple-detector slim PNL tool, which, besides the TOC and other spectroscopy outputs, also provides sigma and neutron porosity and measures a new property, the fast neutron cross section (FNXS), which is useful to detect and quantify gas. The presented case studies include examples of application with both tools in new wells and workovers. More than 20 sands, typically 2- to 5-m thick, interbedded with thick shales, were counted over the 1000- to 1500-m zone of interest, and all the data could be acquired in an acceptable time frame in spite the long intervals. The log data were complemented with the mud logging information and/or correlations from the static geological model. In all cases, we achieved good correlation between the zones with TOC, the static model, and well test results. This experience illustrates the adaptation and application of new technologies to the development of mature fields where conventional openhole resistivity-based analysis is ambiguous. Future tasks include adjusting the technique for quantitative analysis and its use in deeper, more challenging, unconventional reservoirs in the basin.
The formation evaluation of low-porosity tight gas reservoirs in Argentina presents several well-known challenges in the estimation of main petrophysical properties as porosity, clay fraction, permeability, and water saturation. The main goal is to accurately quantify these petrophysical properties with a consistent and reliable petrophysical model. The next task is to reveal the key petrophysical responses that represent the link between petrophysics and production. The present work describes the main petrophysical challenges faced and an innovative workflow used in the Lindero Atravesado field with clear examples to illustrate the effectiveness of this approach. The workflow involves measurements such as advanced elemental gamma ray spectroscopy, multifrequency dielectric dispersion, and nuclear magnetic resonance (NMR). The advanced elemental gamma ray spectroscopy has been key for the creation of a robust mineralogical model, and to derive the matrix properties used to obtain an accurate porosity free of matrix and gas effects with the combination of NMR porosity. The dielectric dispersion provides a direct estimation of water volume, which, in turn, helps to adjust the conventional method of water saturation from resistivity. The good correlation between the petrophysical properties estimated from the proposed workflow and the core analysis, demonstrates the benefits of using the advanced log measurements. The final step of the workflow consists in the definition of poro-fluid facies determined with a new methodology, called NMR factor analysis, that is based on the extraction of multimodal information from the NMR T2 distribution to determine the optimal number of dominant modes (factors) that allow describing the reservoir. Production logging results showed a good relationship between the poro-fluid facies and reservoir productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.