In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the “return to homeostasis” process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2–4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson’s disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
The usefulness of the solvent mixture dichloromethane/methanol for lipid extraction and the determination of lipid classes and fatty acids in samples of different natures was conducted. Two different extraction methods were compared, one containing chloroform/methanol, another containing dichloromethane/methanol. Total lipid extraction showed some minor differences but no variation in the lipid classes. Regarding the fatty acid profile, in Echium virescens seeds, 17 major fatty acids could be identified and quantified, and all were equally extracted when either solvent system was employed. In Echium acanthocarpum hairy roots, 17 major fatty acids were quantified, showing some statistical differences for one cell line in favor of chloroform. The data obtained from the liquid nutrient medium were also comparable. The cod roe sample showed 31 major fatty acids, showing no statistical differences between the two solvent systems. Contrarily, the CH 2Cl 2 method was able to extract 31 main fatty acids found in European seabass dorsal muscle more efficiently than the CHCl 3 method. The results indicate that, for lipid extraction and fatty acid assessment, dichloromethane/methanol can readily replace the commonly employed chloroform/methanol, thus avoiding the major health, security, and regulatory problems associated with the use of chloroform.
The existence of drug-resistant human immunodeficiency virus (HIV) viruses in patients receiving antiretroviral treatment urgently requires the characterization and development of new antiretroviral drugs designed to inhibit resistant viruses and to complement the existing antiretroviral strategies against AIDS. We assayed several natural or semi-synthetic lupane-type pentacyclic triterpenes in their ability to inhibit HIV-1 infection in permissive cells. We observed that the 30-oxo-calenduladiol triterpene, compound 1, specifically impaired R5-tropic HIV-1 envelope-mediated viral infection and cell fusion in permissive cells, without affecting X4-tropic virus. This lupane derivative competed for the binding of a specific anti-CCR5 monoclonal antibody or the natural CCL5 chemokine to the CCR5 viral coreceptor with high affinity. 30-Oxo-calenduladiol seems not to interact with the CD4 antigen, the main HIV receptor, or the CXCR4 viral coreceptor. Our results suggest that compound 1 is a specific CCR5 antagonist, because it binds to the CCR5 receptor without triggering cell signaling or receptor internalization, and inhibits RANTES (regulated on activation normal T cell expressed and secreted)-mediated CCR5 internalization, intracellular calcium mobilization, and cell chemotaxis. Furthermore, compound 1 appeared not to interact with -chemokine receptors CCR1, CCR2b, CCR3, or CCR4. Thereby, the 30-oxocalenduladiol-associated anti-HIV-1 activity against R5-tropic virus appears to rely on the selective occupancy of the CCR5 receptor to inhibit CCR5-mediated HIV-1 infection. Therefore, it is plausible that the chemical structure of 30-oxo-calenduladiol or other related dihydroxylated lupane-type triterpenes could represent a good model to develop more potent anti-HIV-1 molecules to inhibit viral infection by interfering with early fusion and entry steps in the HIV life cycle. The human immunodeficiency virus (HIV)7 pandemic is a medical challenge and represents the public health crisis of our time (1-5). Antiretroviral treatment achieves long-lasting viral suppression and, subsequently, reduces the morbidity and mortality of HIV-infected individuals. However, current drugs do not eradicate HIV infection and lifelong treatment might be needed (2).Emerging drug-resistant HIV viruses, in patients receiving high active antiretroviral treatment, urgently needs the development of new antiretroviral molecules designed to inhibit resistant viruses, because many patients treated during the past decades harbor viral strains with reduced susceptibilities to many if not all available drugs (2, 6). In this matter, pentacyclic triterpenes represent a varied class of natural products presenting antitumor and antiviral activities (7-9). A well studied pentacyclic lupane-type triterpene is the betulinic acid (3-hydroxy-lup-20(29)-en-28-oic acid), widely distributed throughout the plant kingdom, which presents anti-inflammatory, anti-malarial, and anti-HIV-1 effects in vitro (7, 9, 10). Although its mechanism of action has not been f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.