We examined the in vivo expression of up to 16 genes encoding for components of both glutaredoxin and thioredoxin systems and for members of the OxyR and SoxRS regulons. We demonstrated that grxA (Grx1) transcription is triggered in bacteria lacking Trx1 (trxA) and GSH (gshA) in an OxyR-dependent manner. We also indicated that, unlike OxyR, SoxR is not constitutively activated in the oxidizing environment of trxA gshA mutants. We discovered that the lack of Trx1 plus GSH increases the steady-state levels of Trx reductase (trxB) and Trx2 (trxC) transcripts. This increase and the trxB and trxC up-regulation caused by the constitutive oxyR2 allele indicate that OxyR also plays a role in the regulation of the thioredoxin pathway. On the contrary, no change in the expression of genes for Trx1, Grx2, and Grx3 was observed. Transcription of nrdAB (RRase) was not induced by oxidative stress yet was induced by hydroxyurea (RRase inhibitor). Induction level was as the enhanced nrdAB basal expression of trxA grxA mutants, indicating that RRase operation without Trx1 and Grx1 must lead to disturbances sensed as those caused by hydroxyurea. We also demonstrated an inverse relation between nrdAB expression and that of genes coding for components of both glutaredoxin (grxA, gorA) and thioredoxin (trxB, trxC) systems.
We have previously described (1) that Escherichia coli maintains a balanced supply of deoxyribonucleotides by a regulatory mechanism that up-regulates the levels of ribonucleotide reductase with the lack of its main hydrogen donors thioredoxin, glutaredoxin 1, and glutathione (GSH). By using a semi-quantitative reverse transcription/multiplex polymerase chain reaction fluorescent procedure that enables simultaneous analysis of up to seven mRNA species, we now demonstrate that regulation operates at the transcriptional level. Double mutant cells lacking both thioredoxin and glutaredoxin 1 had increased transcription of the nrdAB operon, as compared with the corresponding wild type parent (maximal induction of 10-and 9-fold for mRNA of nrdA and nrdB genes, respectively). Likewise, a dramatic increase of 36-fold in grxA mRNA was observed in bacteria simultaneously deficient in thioredoxin and GSH (the physiological reductant of all glutaredoxins). The increased expression of the grxA gene in trxA gshA double mutant bacteria was mimicked in trxA single mutant cells by depletion of GSH with diethylmaleate (DEM). This induction of grxA transcription was rapid since maximal increase was detected upon 10 min of DEM exposure. Like grxA expression, the basal level of fpg mRNA, encoding formamidopyrimidine-DNA glycosylase, was increased (about 4-fold) in a trxA gshA double mutant strain; this expression was also induced upon exposure to DEM (11-fold maximal induction). These results suggest that transcription of grxA might share common redox regulatory mechanism(s) with that of the fpg gene, involved in the repair of 8-oxoguanine in DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.