Nitrogen (N) is a key input to food production. Nearly half of N fertilizer input is not used by crops and is lost into the environment via emission of gases or by polluting water bodies. It is essential to achieve production levels, which enable global food security, without compromising environmental security. The N pollution level expected by 2050 is projected to be 150% higher than in 2010, with the agricultural sector accounting for 60% of this increase. In this paper, we review the status of the pollution from N fertilizers worldwide and make recommendations to address the situation. The analysis reviews the relationship between N fertilizer use, N use efficiency, no-point pollution, the role of farmer management practices, and policy approaches to address diffuse pollution caused by N fertilization. Several studies show a lack of information as one of the main hurdles to achieve changes in habits. The objective of this study is to highlight the gravity of the current global non-point pollution as well as the need for a communication effort to make farmers aware of the relationship between their activity and N pollution and, therefore, the importance of their fertilizer management practices.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
During the seasons 2003/04, 2004/05 and 2005/06, a study was made of the evolution of runoff as well as soil and available P and K losses in the sediment carried away in a conventional till system-that most used at the present time-and in a no till system with added pruning remains in an olive grove of the picual variety located in Torredonjimeno (Jaén, Spain). A group of microplots for sediment collection in a randomized complete block design was established. The samples were collected in the field after each storm. In the study period, a total of 21 storms were recorded, with a precipitation of 450 mm in 2003/04, 179 mm in 2004/05 and 388 mm in 2005/06. The erosivity of the rainfall was characterized and the cover percentage in the plots throughout the time was determined. The establishment of pruning remains reduced soil loss with respect to conventional tillage (CT) in the 3 years (72%). Likewise, the available P loss greatly declined in the study (46.4%) under conservation agriculture. The reduction in available K loss (72.4%) was much greater than that of available P. The close relationship between both variables and sediment production also stands out. Runoff was the parameter on which the pruning remains had the least influence with only an 11% average reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.