Acute intermittent porphyria is the most common acute porphyria caused by a decrease in hepatic porphobilinogen deaminase activity, resulting in an accumulation of delta-aminolevulinic acid and porphobilinogen. This disease shows nonspecific signs and symptoms that can be confused with other diseases, thereby making the diagnosis difficult. We report a case of acute intermittent porphyria, reviewing clinical and laboratory aspects, highlighting the hematological and biochemical parameters during and after the crisis. A female patient, aged 28 years, suffered two crises, both presenting gastrointestinal disorders. The second presented neuropsychiatric symptoms. The analysis of hematological and biochemical parameters during the second crisis showed anemia, leukocytosis, hyponatremia, mild hypokalemia, uremia and elevated C-reactive protein. The initial treatment included glucose infusion, a diet rich in carbohydrates and interruption of porphyrinogenic drugs. Subsequently, treatment was maintained with oral contraceptive use. According to the observed data, signs and symptoms of gastrointestinal, neurological and psychiatric disorders, associated with laboratory results presented in this paper can be applied to screen acute porphyria, contributing to early diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.