Due to its impact, COVID-19 has been stressing the academy to search for curing, mitigating, or controlling it. It is believed that under-reporting is a relevant factor in determining the actual mortality rate and, if not considered, can cause significant misinformation. Therefore, this work aims to estimate the under-reporting of cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The methodology is based on the combination of data analytics (event detection methods) and time series modeling (inertia and novelty concepts) over hospitalized SARI cases. The estimate of real cases of the disease, called novelty, is calculated by comparing the difference in SARI cases in 2020 (after COVID-19) with the total expected cases in recent years (2016–2019). The expected cases are derived from a seasonal exponential moving average. The results show that under-reporting rates vary significantly between states and that there are no general patterns for states in the same region in Brazil. The states of Minas Gerais and Mato Grosso have the highest rates of under-reporting of cases. The rate of under-reporting of deaths is high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted for the combination of data analytics and time series modeling. Our calculation of under-reporting rates based on SARI is conservative and better characterized by deaths than for cases.
Ao analisar séries temporais é possível observar mudanças significativas no comportamento das observações que frequentemente caracterizam a ocorrência de eventos. Eventos se apresentam como anomalias, pontos de mudança, ou padrões frequentes. Na literatura existem diversos métodos para detecção de eventos. Entretanto, a busca por um método adequado para uma série temporal não é uma tarefa simples, principalmente considerando-se que a natureza dos eventos muitas vezes não é conhecida. Neste contexto, este trabalho apresenta Harbinger, um framework para integração e análise de métodos de detecção de eventos. O Harbinger foi avaliado em dados sintéticos e reais, onde foi possível constatar que suas funcionalidades promovem a seleção de métodos e a compreensão dos eventos detectados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.