Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions.The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication.For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier.In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.
The traditional K-nearest neighbor (KNN) algorithm uses an exhaustive search for a complete training set to predict a single test sample. This procedure can slow down the system to consume more time for huge datasets. The selection of classes for a new sample depends on a simple majority voting system that does not reflect the various significance of different samples (i.e. ignoring the similarities among samples). It also leads to a misclassification problem due to the occurrence of a double majority class. In reference to the above-mentioned issues, this work adopts a combination of moment descriptor and KNN to optimize the sample selection. This is done based on the fact that classifying the training samples before the searching actually takes place can speed up and improve the predictive performance of the nearest neighbor. The proposed method can be called as fast KNN (FKNN). The experimental results show that the proposed FKNN method decreases original KNN consuming time within a range of (75.4%) to (90.25%), and improve the classification accuracy percentage in the range from (20%) to (36.3%) utilizing three types of student datasets to predict whether the student can pass or fail the exam automatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.