PurposeThe Hibiscus rosa-sinensis flower is widely used in Brazilian traditional medicine for the treatment of diabetes and has shown antifertility activity in female Wistar rats. However, there is no scientific confirmation of its effect on diabetes and pregnancy. The aim of this study was evaluate the effect of aqueous extract of H. rosa-sinensis flowers on maternal-fetal outcome in pregnant rats with diabetes.MethodsDiabetes was induced by streptozotocin (STZ, 40 mg/kg) in virgin, adult, female Wistar rats. After diabetes induction, the rats were mated. The pregnant rats were distributed into four groups (n minimum = 11 animals/group): non-diabetic, non-diabetic treated, diabetic, and diabetic treated. Oral aqueous extract of Hibiscus rosa-sinensis was administered to rats in the treatment groups during pregnancy. At term pregnancy, maternal reproductive outcomes, fetal parameters, and biochemical parameters were analyzed.ResultsThe non-diabetic treated group showed decreased high density lipoprotein cholesterol, increased atherogenic index (AI) and coronary artery risk index (CRI), and increased preimplantation loss rate compared to the non-diabetic group. Although treatment with H. rosa-sinensis led to no toxicity, it showed deleterious effects on cardiac and reproductive functions. However, the diabetic treated group showed increased maternal and fetal weights, reduced AI and CRI, and reduced preimplantation loss rate compared to the untreated diabetic group.ConclusionOur results demonstrate beneficial effects of this flower only in pregnant rats with diabetes and their offspring. Although these findings cannot be extrapolated to human clinical use, they show that the indiscriminate intake of H. rosa-sinensis may be harmful to healthy individuals and its use should be completely avoided in pregnancy.
Maternal obesity can cause complications for both women and their offspring for generations. Therefore, we intended to verify the repercussions of induction of transgenerational obesity on biochemical parameters, reproductive performance, and congenital anomaly frequency in Wistar rats. Female rats were used from successive generations. The female rats of parental generation (F, n=10) were mated to obtain their offspring (F generation). F female rats received a monosodium glutamate (MSG) solution to induce obesity (n=07) or vehicle (control, n=06) during the neonatal period. These adult female rats were classified as normal or obese using the Lee Index, mated, and delivered offspring (F generation), which were also evaluated for obesity using the Lee Index in adult life (FMSG, n=13, born from obese dams) or non-obesity status (FControl, n=12, born from control dams), and were mated in adulthood. During pregnancy, glycemia and an oral glucose tolerance test (OGTT) were analyzed. At term pregnancy, the females were sacrificed for serum biochemical profile, maternal reproductive outcomes, and fetal development. In FMSG rats, body weight gain at early pregnancy, glycemia by OGTT, total cholesterol, high-density-lipoprotein, and alanine transaminase activity were higher compared with those of FControl rats. FMSG rats also presented a lower implantation number and gravid uterus weight, increased pre-implantation loss and anomaly frequency in their fetuses (F generation) compared with those of FControl rats. Therefore, even without significant changes in body weight gain, obesity was established at the end of pregnancy of Wistar rats using other biomarkers. Additionally, these rats showed multiple adverse reproductive outcomes, confirming the deleterious effects that lead to obesity.
Bauhinia holophylla, commonly known as "cow's hoof", is widely used in Brazilian folk medicine for the diabetes treatment. Therefore, the aim of this study was at evaluating the aqueous extract effect of Bauhinia holophylla leaves treatment on the streptozotocin-induced diabetic rats. Diabetes was induced by Streptozotocin (40 mg/Kg) in female Wistar rats. Oral administration of aqueous extract of Bauhinia holophylla leaves was given to non-diabetic and diabetic rats at a dose of 400 mg/kg during 21 days. On day 17 of treatment, the Oral Glucose Tolerance Test was performed to determine the area under the curve. At the end of the treatment, the animals were anesthetized and blood was collected for serum biochemical parameters analysis. After treatment with Bauhinia holophylla extract, non-diabetic and diabetic rats presented no glycemic changes. On the other hand, the plant treatment decreased body weight and increased ALT and AST activities. In conclusion, the treatment with aqueous extract of B. holophylla leaves given to diabetic rats presented no hypoglycemic effect in nondiabetic animals and no antidiabetic effect in diabetic animals with the doses studied. In addition, the diabetic animals treated with the B. holophylla extract showed inconvenient effects and its indiscriminate consumption requires particular carefulness.
Croton urucurana treatment caused maternal toxicity, which contributed for impairment embryo fetal development. These results showed that the indiscriminate use of plants during pregnancy should be avoided to prevent potential risk on maternal health as well as their offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.