Cellular Automata (CAs) is a nature-inspired and widespread computational model which is based on the collective and emergent parallel computing capability of units (cells) locally interconnected in an abstract brain-like structure. Each such unit, referred as CA cell, performs simplistic computations/processes. However, a network of such identical cells can exhibit nonlinear behavior and be used to model highly complex physical phenomena and processes and to solve problems that are highly complicated for conventional computers. Brain activity has always been considered one of the most complex physical processes and its modeling is of utter importance. This work combines the CA parallel computing capability with the nonlinear dynamics of the memristor, aiming to model brain activity during the epileptic seizures caused by the spreading of pathological dynamics from focal to healthy brain regions. A CAbased confrontation extended to include long-range interactions, combined with the recent notion of memristive electronics, is thus proposed as a modern and promising parallel approach to modeling of such complex physical phenomena. Simulation results show the efficiency of the proposed design and the appropriate reproduction of the spreading of an epileptic seizure.
Research progress in edge computing hardware, capable of demanding in-the-field processing tasks with simultaneous memory and low power properties, is leading the way towards a revolution in IoT hardware technology. Resistive random access memories (RRAM) are promising candidates for replacing current non-volatile memories and realize storage class memories, but also due to their memristive nature they are the perfect candidates for in-memory computing architectures. In this context, a CMOS compatible silicon nitride (SiN) device with memristive properties is presented accompanied by a data-fitted model extracted through analysis of measured resistance switching dynamics. Additionally, a new phototransistor-based image sensor architecture with integrated SiN memristor (1P1R) was presented. The in-memory computing capabilities of the 1P1R device were evaluated through SPICE-level circuit simulation with the previous presented device model. Finally, the fabrication aspects of the sensor are discussed.
Inspired by the behavior of natural systems, Cellular Automata (CA) tackle the demanding long-distance information transfer of conventional computers by the massive parallel computation performed by a set of locally-coupled dynamical nodes. Although CA are envisioned as powerful deterministic computers, their intrinsic capabilities are expanded after the memristor's probabilistic switching is introduced into CA cells, resulting in new hybrid deterministic and probabilistic memristor-based CA (MemCA). In the proposed MemCA hardware realization, memristor devices are incorporated in both the cell and rule modules, composing the very first all-memristor CA hardware, designed with mixed CMOS/Memristor circuits. The proposed implementation accomplishes high operating speed and reduced area requirements, exploiting also memristor as an entropy source in every CA cell. MemCA's functioning is showcased in deterministic and probabilistic operation, which can be externally modified by the selection of programming voltage amplitude, without changing the design. Also, the proposed MemCA system includes a reconfigurable rule module implementation that allows for spatial and temporal rule inhomogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.