Physical and numerical simulations of the hot rolling and laminar cooling of DP steel strips are presented in the paper. The objectives of the paper were twofold. Physical simulations of hot plastic deformation were used to identify and validate numerical models. Validated models were applied to simulate the manufacturing of DP steel strips. Conventional flow stress model and microstructure evolution model were used in the hot deformation part. The approach to the complex systems analysis based on global thermodynamic characterization and detailed microstructure characterization was applied to determine equilibrium state at various temperatures. Finally, two numerical models were used to simulate kinetics of austenite decomposition at varying temperatures: the first, conventional model based on the Avrami equation, and the second, the discrete Cellular Automata approach. Plastometric tests and stress relaxation tests were used for identification of the hot rolling model for the DP steel. Dilatometric tests were performed to identify the phase transformation models. Verification confirmed good accuracy of all models. Validated models were applied to simulate the manufacturing of DP steel strips. Influence of technological parameters (e.g., strip thickness and velocity, active sections in the laminar cooling, and water flux in the sections) on the DP microstructure was analyzed. The cooling schedules, which give required microstructures were proposed. The numerical tool, which simulates manufacturing chain for DP steel strips is the main output of the paper.
The main goal of the present research is to realize a sensitivity analysis of the developed complex micro scale austenite (γ) to ferrite (α) phase transformation model. The proposed solution is implemented in the developed Cellular Automata Framework that facilitates implementation of various microstructure evolution models. Investigated model predicts phase transformation progress starting from the fully austenitic or two-phase regions. Theoretical background of the implemented austenite-ferrite phase transformation model is presented in the paper. The defined transition rules for initiation and subsequent growth as well as internal variables for each particular CA cell are also discussed. Examples of results obtained from the developed model, as well as model capabilities are shown. Finally sensitivity analysis using Morris OAT Design is also presented and discussed.
Abstract. The concurrent cellular automata finite element (CAFE) approach for modelling microstructure evolution under thermo-mechanical processing conditions is the subject of the present work. Particular attention is put on modelling two phenomena, static recrystallization after deformation and phase transformation during heating. Details of the developed models are presented within the paper. Both models are implemented based on the CA Framework, which is also described in the work. Finally cellular automata approaches are combined with the finite element model based on the digital material representation idea. The numerical modelling of complex multistage hot deformation process was selected as a case study to show capabilities of the developed cellular automata finite element model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.