Bovine photoreceptor guanylate cyclase (ROS-GC) consists of a single transmembrane polypeptide chain with extracellular and intracellular domains. In contrast to non-photoreceptor guanylate cyclases (GCs) which are activated by hormone peptides, ROS-GC is modulated in low Ca2+ by calmodulin-like Ca(2+)-binding proteins termed GCAPs (guanylate cyclase-activating proteins). In this communication we show that, like the native system, ROS-GC expressed in COS cells is activated 4-6-fold by recombinant GCAP1 at 10 nM Ca2+ and that the reconstituted system is inhibited at physiological levels of Ca2+ (1 microM). A mutant ROS-GC in which the extracellular domain was deleted was stimulated by GCAP1 indistinguishable from native ROS-GC indicating that this domain is not involved in Ca2+ modulation. Deletion of the intracellular kinase-like domain diminished the stimulation by GCAP1, indicating that this domain is at least in part involved in Ca2+ modulation. Replacement of the catalytic domain in a non-photoreceptor GC by the catalytic domain of ROS-GC yielded a chimeric GC that was sensitive to ANF/ATP and to a lesser extent to GCAP1. The results establish that GCAP1 acts at an intracellular domain, suggesting a mechanism of photoreceptor GC stimulation fundamentally distinct from hormone peptide stimulation of other cyclase receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.