The raw EEG signal is always contaminated with many different artifacts, such as muscle movements (electromyographic artifacts), eye blinking (electrooculographic artifacts) or power line disturbances. All artifacts must be removed for correct data interpretation. However, various noise reduction methods significantly influence the final shape of the EEG signal and thus its characteristic values, latency and amplitude. There are several types of filters to eliminate noise early in the processing of EEG data. However, there is no gold standard for their use. This article aims to verify and compare the influence of four various filters (FIR, IIR, FFT, NOTCH) on the latency and amplitude of the EEG signal. By presenting a comparison of selected filters, the authors intend to raise awareness among researchers as regards the effects of known filters on latency and amplitude in a selected area—the sensorimotor area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.