Performance of different estimators describing propagation of electroencephalogram (EEG) activity, namely: Granger causality, directed transfer function (DTF), direct DTF (dDTF), short-time DTF (SDTF), bivariate coherence, and partial directed coherence are compared by means of simulations and on the examples of experimental signals. In particular, the differences between pair-wise and multichannel estimates are studied. The results show unequivocally that in most cases, the pair-wise estimates are incorrect and a complete set of signals involved in a given process has to be used to obtain the correct pattern of EEG flows. Different performance of multivariate estimators of propagation depending on their normalization is discussed. Advantages of multivariate autoregressive model are pointed out.
The multivariate versus bivariate measures of Granger causality were considered. Granger causality in the application to multivariate physiological time series has the meaning of the information flow between channels. It was shown by means of simulations and by the example of experimental electroencephalogram signals that bivariate estimates of directionality in case of mutually interdependent channels give erroneous results, therefore multivariate measures such as directed transfer function should be used for determination of the information flow.
A new method (Event-Related Causality, ERC) is proposed for the investigation of functional interactions between brain regions during cognitive processing. ERC estimates the direction, intensity, spectral content, and temporal course of brain activity propagation within a cortical network. ERC is based upon the short-time directed transfer function (SDTF), which is measured in short EEG epochs during multiple trials of a cognitive task, as well as the direct directed transfer function (dDTF), which distinguishes direct interactions between brain regions from indirect interactions via brain regions. ERC uses new statistical methods for comparing estimates of causal interactions during prestimulus "baseline" epochs and during poststimulus "activated" epochs in order to estimate event-related increases and decreases in the functional interactions between cortical network components during cognitive tasks. The utility of the ERC approach is demonstrated through its application to human electrocorticographic recordings (ECoG) of a simple language task. ERC analyses of these ECoG recordings reveal frequency-dependent interactions, particularly in high gamma (>60 Hz) frequencies, between brain regions known to participate in the recorded language task, and the temporal evolution of these interactions is consistent with the putative processing stages of this task. The method may be a useful tool for investigating the dynamics of causal interactions between various brain regions during cognitive task performance.
Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (> 60 Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC “divergence”, were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping interfered with word production. These findings suggest that the number, strength and directionality of event-related causal interactions may help identify network nodes that are not only activated by a task but are critical to its performance.
Steady state visual evoked potentials (SSVEPs) are steady state oscillatory potentials elicited in the electroencephalogram (EEG) by flicker stimulation. The frequency of these responses maches the frequency of the stimulation and of its harmonics and subharmonics. In this study, we investigated the origin of the harmonic and subharmonic components of SSVEPs, which are not well understood. We applied both sine and square wave visual stimulation at 5 and 15 Hz to human subjects and analyzed the properties of the fundamental responses and harmonically related components. In order to interpret the results, we used the well-established neural mass model that consists of interacting populations of excitatory and inhibitory cortical neurons. In our study, this model provided a simple explanation for the origin of SSVEP spectra, and showed that their harmonic and subharmonic components are a natural consequence of the nonlinear properties of neuronal populations and the resonant properties of the modeled network. The model also predicted multiples of subharmonic responses, which were subsequently confirmed using experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.