For a real càdlàg function f defined on a compact interval, its truncated variation at the level c > 0 is the infimum of total variations of functions uniformly approximating f with accuracy c/2 and (in opposite to the total variation) is always finite. In this paper, we discuss exponential integrability and concentration properties of the truncated variation of fractional Brownian motions, diffusions and Lévy processes. We develop a special technique based on chaining approach and using it we prove Gaussian concentration of the truncated variation for certain class of diffusions. Further, we give sufficient and necessary condition for the existence of exponential moment of order α > 0 of truncated variation of Lévy process in terms of its Lévy triplet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.