Tick saliva has pleiotropic properties that facilitate persistence of the arthropod upon the host. We now describe a feeding-inducible protein in Ixodes scapularis saliva, Salp15, that inhibits CD4(+) T cell activation. The mechanism involves the repression of calcium fluxes triggered by TCR ligation and results in lower production of interleukin-2. Salp15 also inhibits the development of CD4(+) T cell-mediated immune responses in vivo, demonstrating the functional importance of this protein. Salp15 provides a molecular basis for understanding the immunosuppressive activity of I. scapularis saliva and vector-host interactions.
Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4+ T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-κB in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-α. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4+ T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.
Spirochete adaptation in vivo is associated with preferential Borrelia burgdorferi gene expression. In this paper, we show that the administration of B. burgdorferi-immune sera to IFN-γR-deficient mice that have been infected with B. burgdorferi N40 for 4 days causes spirochete clearance. In contrast, immune sera-mediated clearance of B. burgdorferi N40 is not apparent in immunocompetent mice, suggesting a role for IFN-γ-mediated responses in B. burgdorferi N40 host adaptation. B. burgdorferi-immune sera also induces clearance of B. burgdorferi N40 that have been passaged in vitro 75 times (B. burgdorferi N40-75), a derivative of B. burgdorferi N40 that does not rapidly adapt in vivo in immunocompetent mice. B. burgdorferi N40-75 produce lower levels of IFN-γ and IL-12 in mice than does B. burgdorferi N40, and the administration of these cytokines to B. burgdorferi N40-75-infected mice results in an increased spirochetal burden, further indicating that IFN-γ-mediated events promote B. burgdorferi survival. Differential immunoscreening and RT-PCR demonstrate that IFN-γ-mediated signals facilitate spirochete recombination at the variable major protein like sequence locus, a site for early antigenic variation in vivo, and that recombination rates by B. burgdorferi N40 are lower in IFN-γR-deficient mice than in control animals. These results suggest that the murine immune response can promote the in vivo adaptation of B. burgdorferi.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the progressive loss of motor neurons in the spinal cord and brain. To date, clinically effective neuroprotective agents have not been available. The current study demonstrates for the first time that huperzine A, a potential neuroprotective agent, has the ability to protect a motor neuron-like cell line and motor neurons in spinal cord organotypic cultures from toxin-induced cell death. The neuroblastoma-spinal motor neuron fusion cell line, NSC34 and rat spinal cord organotypic cultures (OTC) were exposed to cell death inducers for 24 h or 14 d, respectively, with and without pre-treatment with huperzine A. The inducers used here include: staurosporine, thapsigargin, hydrogen peroxide (H2O2), carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and L-(-)-threo-3-hydroxyaspartic acid (THA). These agents were selected as they induce apoptosis/necrosis via mechanisms implicated in patients with generalized motor neuron disease. Cell death was determined in NSC34 cells by metabolic activity, caspase activity/expression and by nuclear morphology and in the OTCs, using immunohistochemistry and Western blot analysis. Nuclear staining of NSC34 cells revealed cell death induced by staurosporine, thapsigargin, H2O2 and CCCP. This induction was significantly reduced with 2 h pre-treatment with 10 microM huperzine A (maximum, 35% rescue; p 0.05) following exposure to staurosporine, thapsigargin and H2O2 but not with CCCP. These data were supported by the metabolic assays and caspase activity. In addition, pre-treatment with huperzine A dramatically improved motor neuron survival, based on choline acetyltransferase (ChAT) expression analysis in OTCs following exposure to THA, and compared to THA-treated control cultures. These studies are currently being extended to include other inducers and with additional compounds as potential drug therapies that could be used in combination for the treatment of patients with ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.