Purpose
The purpose of this study is to show the potentials of a cost-effective unmanned aerial vehicles (UAV) system for agriculture industry. The current population growth rate is so vast that farming industry must be highly efficient and optimized. As a response for high quality food demands, the new branch of the agriculture industry has been formed – the precision agriculture. It supports farming process with sensors, automation and innovative technologies. The UAV advantages over regular aviation are withering. Not only they can fly at lower altitude and are more precise but also offer same high quality and are much cheaper.
Design/methodology/approach
The main objective of this project was to implement an exemplary cost-effective UAV system with electronic camera stabilizer for gaining useful data for agriculture. The system was based on small, unmanned flying wing able to perform fully autonomous missions, a commercially available camera and an own-design camera stabilizer. The research plan was to integrate the platform and run numerous experimental flights over farms, fields and woods collecting aerial pictures. All the missions have been planned to serve for local farming and forest industries and cooperated with local business authorities.
Findings
In preliminary flight tests, the variety of geodetic, forest and agriculture data have been acquired, placed for post processing and applied for the farming processes. The results of the research were high quality orthophoto maps, 3D maps, digital surface models and images mosaics with normalized difference vegetation index. The end users were astonished with the high-quality results and claimed the high importance for their business.
Originality/value
The case study results proved that this kind of a small UAV system is exceptional to manage and optimize processes at innovative farms. So far only professional, high-cost UAV platforms or traditional airships have been applied for agriculture industry. This paper shows that even simple, commercially available equipment could be used for professional applications.
Purpose
Additive manufacturing technology, also commonly called as 3D printing technology, is entering rapidly into the aerospace world and seems to be its future. Many manufacturing processes are replaced by this technology because the ease of use, low costs and new possibilities to make complicated parts. However, there are only few solutions which present manufacturing of structurally critical parts.
Design/methodology/approach
Complete process of deriving loads, design of fitting geometry, numerical validation, manufacturing and strength testing was presented. The emphasis was made to show specific features of 3D technology in printed fittings for UAV.
Findings
The research confirms that the technology can be used for the application of fittings manufacturing. Attention needs to be paid, during the design process, to account for specific features of the 3D printing technology, which is described in details.
Practical implications
Without a doubt, additive manufacturing is useful for manufacturing complicated parts within limited time and with reduction cost. It was also shown that the manufactured parts can be used for highly loaded structures.
Originality/value
The paper shows how additive manufacturing technology can be used to produce significantly loaded parts of airplanes’ structure. Only few such examples were presented till now.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.