Recently, three of us have proposed a method [Phys. Rev. Lett. 91, 33201 (2003)] for an accurate calculation of the dispersion energy utilizing frequency-dependent density susceptibilities of monomers obtained from time-dependent density-functional theory (DFT). In the present paper, we report numerical calculations for the helium, neon, water, and carbon dioxide dimers and show that for a wide range of intermonomer separations, including the van der Waals and short-range repulsion regions, the method provides dispersion energies with accuracies comparable to those that can be achieved using the current most sophisticated wave-function methods. If the dispersion energy is combined with (i) the electrostatic and first-order exchange interaction energies as defined in symmetry-adapted perturbation theory (SAPT) but computed using monomer Kohn-Sham (KS) determinants, and (ii) the induction energy computed using the coupled KS static response theory, (iii) the exchange-induction and exchange-dispersion energies computed using KS orbitals and orbital energies, the resulting method, denoted by SAPT(DFT), produces very accurate total interaction potentials. For the helium dimer, the only system with nearly exact benchmark values, SAPT(DFT) reproduces the interaction energy to within about 2% at the minimum and to a similar accuracy for all other distances ranging from the strongly repulsive to the asymptotic region. For the remaining systems investigated by us, the quality of the SAPT(DFT) interaction energies is so high that these energies may actually be more accurate than the best available results obtained with wave-function techniques. At the same time, SAPT(DFT) is much more computationally efficient than any method previously used for calculating the dispersion and other interaction energy components at this level of accuracy.
The results of the sixth blind test of organic crystal structure prediction methods are presented and discussed, highlighting progress for salts, hydrates and bulky flexible molecules, as well as on-going challenges.
We present a complete 6-dimensional potential energy surface for the benzene dimer obtained using symmetry-adapted perturbation theory (SAPT) of intermolecular interactions based on Kohn-Sham's description of monomers. Ab initio calculations were performed for 491 dimer geometries in a triple-zeta-quality basis set supplemented by bond functions. An accurate analytic fit to the ab initio results has been developed and low-energy stationary points on the potential energy surface have been found. We have determined that there are three minima on the surface. Two of them, the tilted T-shape and the parallel-displaced, are nearly isoenergetic with interaction energies of -2.77 and -2.74 kcal/mol, respectively. The third minimum, a twisted edge-to-edge conformation, is significantly less attractive, with the interaction energy equal to -1.82 kcal/mol. Both the T-shape and sandwich geometries, sometimes assumed to be minima, are shown to be only saddle points. The potential energy surface is extremely flat between the two lowest minima, the barrier being only 0.10 kcal/mol above the global minimum. The second-virial coefficient obtained with the new potential agrees well with experimental results over a wide range of temperatures. The SAPT approach rigorously decomposes the interaction energy into physical components. The relative importance of these components has been analyzed.
A new density functional (DF) method is proposed for calculations of intermolecular interaction energies. The exchange-correlation functional was optimized in such a way that the method recovers the interaction energies with the dispersion (including exchange-dispersion) component subtracted and therefore our approach is named the dispersionless DF (dlDF) method. The dlDF method is shown to predict very well the dispersionless part of the interaction energy for all types of intermolecular interactions. Thus, if combined with a dispersion component, computed ab initio or from a simple function fitted to ab initio values, it provides accurate and physically justified interaction energies in the whole range of intermolecular separations. Our dispersion function is significantly more accurate than the published ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.