New highly active isomers of the natural hormone 1alpha, 25-dihydroxyvitamin D3 possessing an exomethylene group at the 2-position were prepared in a convergent manner, starting with (-)-quinic acid and the corresponding (20R)- and (20S)-25-hydroxy Grundmann ketones. These 2-methylene-19-norvitamins were efficiently converted to the 2-methyl and 2-hydroxymethyl derivatives, some of which exhibited pronounced in vivo biological activity. Configurations of the A-ring substituents were determined by 1H NOE difference spectroscopy as well as by spin decoupling experiments. It was established that the bulky methyl and hydroxymethyl substituents at C-2, due to their large conformational free energies, occupy mainly equatorial positions. Additionally, hydroxylation of the C(10)-C(19) double bond in 1alpha,25-(OH)2D3 was performed, resulting in 1alpha,19,25-trihydroxy-10,19-dihydrovitamin D3 derivatives in which the hydroxymethyl substituent at C-10, for steric reasons, is forced to occupy an axial position. In consequence, the vitamin D3 analogues were synthesized in which the 1alpha-hydroxy group, required for biological activity, is almost exclusively axially or equatorially oriented because of stabilization of the single A-ring chair conformations. The relative ability of the synthesized analogues to bind the porcine intestinal vitamin D receptor was assessed and compared with that of the natural hormone. It was established that vitamins possessing the axial orientation of the 1alpha-hydroxy substituent exhibit a significantly increased receptor binding affinity. Compounds with a 2-methylene substituent showed selective calcemic activity profiles, being extremely effective on bone calcium mobilization. 2alpha-Methyl-substituted vitamins proved to be much more active in vivo than the corresponding epimers with 2beta-configuration. All of the 2-substituted vitamins exhibited pronounced HL-60 differentiating activity, those 2alpha-substituted in the 20S-series being especially potent. The present studies imply that the axial orientation of the 1alpha-hydroxy group is necessary for biological activity of vitamin D compounds.
The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is best known because it mediates the actions of polycyclic and halogenated aromatic hydrocarbon environmental toxicants such as 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report here the successful identification of an endogenous ligand for this receptor; Ϸ20 g was isolated in pure form from 35 kg of porcine lung. Its structure was deduced as 2-(1H-indole-3-carbonyl)-thiazole-4-carboxylic acid methyl ester from extensive physical measurements and quantum mechanical calculations. In a reporter gene assay, this ligand activates the AHR with a potency five times greater than that of -naphthoflavone, a prototypical synthetic AHR ligand. 2-(1H-indole-3-carbonyl)-thiazole-4-carboxylic acid methyl ester competes with 2,3,7,8-[ 3 H]tetrachlorodibenzo-p-dioxin for binding to human, murine, and fish AHRs, thus showing that AHR activation is caused by direct receptor binding, and that recognition of this endogenous ligand is conserved from early vertebrates (fish) to humans.
In a search for novel vitamin D compounds of potential therapeutic value, E- and Z-isomers of 1alpha,25-dihydroxy-2-(3'-hydroxypropylidene)-19-norvitamin D(3), as well as a derivative of the former compound possessing a 3'-(methoxymethoxy)propylidene substituent at C-2, were efficiently prepared. All vitamins were obtained in convergent syntheses, starting with (-)-quinic acid and the protected 25-hydroxy Grundmann ketones. Quinic acid was converted into keto lactone 11, and a substituted hydroxypropylidene group was attached by Wittig reaction yielding pairs of isomeric compounds 12, 13 and 14, 15. These olefinic products were then transformed into phosphine oxides 32-34 which were subjected to Lythgoe type Wittig-Horner coupling with C,D-fragments 35a and 35b. An alternative route was also elaborated that comprised Julia coupling of sulfones 39a and 39b with the cyclohexanone derivative 23. The binding of all synthesized vitamins to the full-length rat recombinant vitamin D receptor (VDR) is either similar to or within one log of 1alpha,25(OH)(2)D(3). The in vivo tests have revealed that the calcemic activity of all analogues in the E-series (5a, 6a, 6b) is considerably higher than that of the native hormone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.