The paper presents tests of lead oxidation in a Barton reactor with a capacity of 1200 kg PbO/h, divided into two series. The first series was carried out in conditions of high humidity of the air supplied to the reactor (59–61%), and the second series in conditions of low humidity (19–21%). The study used lead of various purity levels, the main impurities of which were bismuth and silver. The obtained results show that the use of air with a humidity of about 60% in the process allows us to obtain high-quality PbO and has a positive effect on processing parameters such as the amount of lead processed and the efficiency of the process. The mentioned processing parameters significantly influence the production cost of lead oxide. The effect of lead impurities on the process of lead oxidation and the quality of the obtained product was noticed. This dependence is especially visible in the case of the process efficiency, the amount of lead processed per time unit and the amount of formed scrap. The increase in the content of impurities adversely affects each of the parameters mentioned. Optimal parameters of lead oxide regarding the expected acid absorption at the level above 16 g H2SO4/100 g PbO and the degree of oxidation at the level of 75% were obtained for the air humidity of about 60% with the content of pollutants below 100 ppm. The paper presents data on the process parameters and the relationships between them, unpublished in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.