In this paper we study two statistical approaches to load forecasting. Both of them model electricity load as a sum of two components -a deterministic (representing seasonalities) and a stochastic (representing noise). They differ in the choice of the seasonality reduction method. Model A utilizes differencing, while Model B uses a recently developed seasonal volatility technique. In both models the stochastic component is described by an ARMA time series. Models are tested on a time series of system-wide loads from the California power market and compared with the official forecast of the California System Operator (CAISO).
Since the inception of competitive power markets two decades ago, electricity price forecasting (EPF) has gradually become a fundamental process for energy companies' decision making mechanisms. Over the years, the bulk of research has concerned point predictions. However, the recent introduction of smart grids and renewable integration requirements has had the effect of increasing the uncertainty of future supply, demand and prices. Academics and practitioners alike have come to understand that probabilistic electricity price (and load) forecasting is now more important for energy systems planning and operations than ever before. With this paper we offer a tutorial review of probabilistic EPF and present much needed guidelines for the rigorous use of methods, measures and tests, in line with the paradigm of 'maximizing sharpness subject to reliability'. The paper can be treated as an update and a further extension of the otherwise comprehensive EPF review of Weron [1] or as a standalone treatment of a fascinating and underdeveloped topic, that has a much broader reach than EPF itself.
A major issue in financial economics is the behavior of asset returns over long horizons. Various estimators of long range dependence have been proposed. Even though some have known asymptotic properties, it is important to test their accuracy by using simulated series of different lengths. We test R/S analysis, Detrended Fluctuation Analysis and periodogram regression methods on samples drawn from Gaussian white noise. The DFA statistics turns out to be the unanimous winner. Unfortunately, no asymptotic distribution theory has been derived for this statistics so far. We were able, however, to construct empirical (i.e. approximate) confidence intervals for all three methods. The obtained values differ largely from heuristic values proposed by some authors for the R/S statistics and are very close to asymptotic values for the periodogram regression method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.