The Internet of Things (IoT) is the next generation of internet-connected information communication technologies (ICT). IoT typically integrates supply chain activities to enhance green supply chain performance (GSCP). Since every organization has different IoT capabilities in comparison with other organizations, GSCP can enable supply chain integration activities for enhanced performance. The implementation of an IoT system can reduce the consumption of organizational resources like energy, electricity, and time and can increase the operational speed to gain better logistics and, ultimately, improved supply chain performance. This study has developed and empirically tested the relationship between IoT capabilities, energy consumption behavior (ECB), supply chain integration, green training (GT), and supply chain practices. Such a multidisciplinary relationship has not previously been established in the literature. The proposed study can fulfill the literature gap and opens new horizons for interdisciplinary research. Data used in this study are collected through offline and online survey methods. A total number of 250 out of 400 respondents participated in the survey. Data has been analyzed through partial least square—structure equation modeling (PLS—SEM) technique. The results of this study empirically test the developed model. IoT has a positive effect on supplier integration (SI), and customer integration (CI). Furthermore, SI and CI have a mediating role between IoT and GSCP, and GT has a positive impact on GSCP. It is concluded that the implementation of IoT can integrate CI and SI to increase GSCP. GT and ECB can ultimately improve GSCP. Additionally, the use of technology and GT can motivate employees to save energy and protect the environment to increase GSCP.
Agriculture is suffering from the problem of low fertility and climate hazards such as increased pest attacks and diseases. Early prediction of pest attacks can be very helpful in improving productivity in agriculture. Insect pest (whitefly) attack has a high influence on cotton crop yield. Internet of Things solution is proposed to predict the whitefly attack to take prevention measures. An insect pest prediction system (IPPS) was developed with the help of the Internet of Things and a RBFN algorithm based on environmental parameters such as temperature, humidity, rainfall, and wind speed. Pest Warning and Quality Control of Pesticides proposed an economic threshold level for prediction of whitefly attack. The economic threshold level and RBFN algorithm are used to predict the whitefly attack using temperature, humidity, rainfall, and wind speed. The seven evaluation metrics accuracy, f-measures, precision, recall, Cohen’s kappa, ROC AUC, and confusion matrix are used to determine the performance of the RBFN algorithm. The proposed insect pest prediction system is deployed in the high influenced region of pest that provides pest prediction information to the farmer to take control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.