This article analyzes the influence of the ignition retardation on the fuel consumption, the cumulative tailpipe hydrocarbon emissions, and the temperature inside the three-way catalytic converter in a gasoline direct injection engine operated under idling conditions. A dedicated cylinder-individual, model-based, multivariable controller was used in experiments in order to isolate the effect of the ignition retardation on the hydrocarbon emissions as much as possible. An optimal control problem for a gasoline engine at a cold-start is formulated, which is used to interpret the experimental data obtained. The corresponding goal is to minimize the fuel consumption during an initial idling phase of a fixed duration while guaranteeing that the three-way catalytic converter reaches a sufficiently high final temperature and at the same time making sure that the cumulative hydrocarbon emissions stay below a given limit. The experimental data indicates that the engine should be operated with maximum ignition retardation in order to reach any temperature inside the three-way catalytic converter as quickly as possible concurrently with minimum tailpipe emissions and with the minimum possible fuel consumption.
This article introduces a physical model of a three-way catalytic converter oriented to engine cold-start conditions. Computational cost is an important factor, particularly when the modelling is oriented to the development of engine control strategies. That is why a one-dimensional one-channel real-time capable model is proposed. The present model accounts for two phases, gas and solid, respectively, considering not only the heat transfer by convection between both, but also the water vapour condensation and evaporation in the catalyst brick, which plays a key role during engine cold-start. Moreover, the model addresses the conductive heat flow, heat losses to the environment and exothermic reactions in the solid phase, as well as the convective heat flow in the gas phase. Regarding the chemical model, the oxidation of hydrocarbons and carbon monoxide is considered by means of the Langmuir–Hinshelwood mechanism. Three layers make up the model structure from a kinetic point of view, bulk gas, washcoat pores and noble metal in the catalyst surface. The model takes fuel-to-air ratio, exhaust gas mass flow, temperature, pressure and gas composition as inputs, providing the thermal distribution as well as the species concentration along the converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.