The chemokine CX3CL1 and its receptor CX3CR1 are constitutively expressed in the nervous system. In this study, we used in vivo murine models of permanent middle cerebral artery occlusion (pMCAO) to investigate the protective potential of CX3CL1. We report that exogenous CX3CL1 reduced ischemia-induced cerebral infarct size, neurological deficits, and caspase-3 activation. CX3CL1-induced neuroprotective effects were long lasting, being observed up to 50 d after pMCAO in rats. The neuroprotective action of CX3CL1 in different models of brain injuries is mediated by its inhibitory activity on microglia and, in vitro, requires the activation of adenosine receptor 1 (A 1 R). We show that, in the presence of the A 1 R antagonist 1,3-dipropyl-8-cyclopentylxanthine and in A 1 R ؊/؊ mice, the neuroprotective effect of CX3CL1 on pMCAO was abolished, indicating the critical importance of the adenosine system in CX3CL1 protection also in vivo. In apparent contrast with the above reported data but in agreement with previous findings, cx3cl1 ؊/؊ and cx3cr1 GFP/GFP mice, respectively, deficient in CX3CL1 or CX3CR1, had less severe brain injury on pMCAO, and the administration of exogenous CX3CL1 increased brain damage in cx3cl1 ؊/؊ ischemic mice. We also report that CX3CL1 induced a different phagocytic activity in wild type and cx3cl1 ؊/؊ microglia in vitro during cotreatment with the medium conditioned by neurons damaged by oxygenglucose deprivation. Together, these data suggest that acute administration of CX3CL1 reduces ischemic damage via an adenosinedependent mechanism and that the absence of constitutive CX3CL1-CX3CR1 signaling changes the outcome of microglia-mediated effects during CX3CL1 administration to ischemic brain.
Fractalkine/CX3CL1 is a neuron-associated chemokine, which modulates microglia-induced neurotoxicity activating the specific and unique receptor CX3CR1. CX3CL1/CX3CR1 interaction modulates the release of cytokines from microglia, reducing the level of tumor necrosis factor-a, interleukin-1-b, and nitric oxide and induces the production of neurotrophic substances, both in vivo and in vitro. We have recently shown that blocking adenosine A 1 receptors (A 1 R) with the specific antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) abolishes CX3CL1-mediated rescue of neuronal excitotoxic death and that CX3CL1 induces the release of adenosine from microglia. In this study, we show that the presence of extracellular adenosine is mandatory for the neurotrophic effect of CX3CL1 as reducing adenosine levels in hippocampal cultures, by adenosine deaminase treatment, strongly impairs CX3CL1-mediated neuroprotection. Furthermore, we confirm the predominant role of microglia in mediating the neuronal effects of CX3CL1, because the selective depletion of microglia from hippocampal cultures treated with clodronate-filled liposomes causes the complete loss of effect of CX3CL1. We also show that hippocampal neurons obtained from A 1 R À/À mice are not protected by CX3CL1 whereas A 2A R À/À neurons are. The requirement of functional A 1 R for neuroprotection is not unique for CX3CL1 as A 1 R À/À hippocampal neurons are not rescued from Glu-induced cell death by other neurotrophins such as brain-derived neurotrophic factor and erythropoietin, which are fully active on wt neurons.
Glioblastoma multiforme (GBM) is a diffuse brain tumor characterized by high infiltration in the brain parenchyma rendering the tumor difficult to eradicate by neurosurgery. Efforts to identify molecular targets involved in the invasive behavior of GBM suggested ion channel inhibition as a promising therapeutic approach. To determine if the Ca2+-dependent K+ channel KCa3.1 could represent a key element for GBM brain infiltration, human GL-15 cells were xenografted into the brain of SCID mice that were then treated with the specific KCa3.1 blocker TRAM-34 (1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole). After 5 weeks of treatment, immunofluorescence analyses of cerebral slices revealed reduced tumor infiltration and astrogliosis surrounding the tumor, compared with untreated mice. Significant reduction of tumor infiltration was also observed in the brain of mice transplanted with KCa3.1-silenced GL-15 cells, indicating a direct effect of TRAM-34 on GBM-expressed KCa3.1 channels. As KCa3.1 channels are also expressed on microglia, we investigated the effects of TRAM-34 on microglia activation in GL-15 transplanted mice and found a reduction of CD68 staining in treated mice. Similar results were observed in vitro where TRAM-34 reduced both phagocytosis and chemotactic activity of primary microglia exposed to GBM-conditioned medium. Taken together, these results indicate that KCa3.1 activity has an important role in GBM invasiveness in vivo and that its inhibition directly affects glioma cell migration and reduces astrocytosis and microglia activation in response to tumor-released factors. KCa3.1 channel inhibition therefore constitutes a potential novel therapeutic approach to reduce GBM spreading into the surrounding tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.