Studies with animals support a role for vitamin K (VK) in the biosynthesis of sphingolipids, a class of complex lipids present in high concentrations in the brain. In mice and rats, VK deficiency decreases levels of brain sulfatides and causes behavioral alterations. In light of its heterogeneity and to better understand the role of VK in the brain, we characterized the distribution of the two main VK vitamers, phylloquinone (K1) and menaquinone-4 (MK-4), in nine distinct brain regions. Weaning female Sprague-Dawley rats (n=5/dietary group) were fed diets containing either low (L, 80 microg/kg diet), adequate (A, 500 microg/kg diet) or high (H, 2000 microg/kg diet) levels of K1 for 6 mo. The main form of VK in the brain was MK-4, and it was present in significantly higher concentrations in myelinated regions (the pons medulla and midbrain) than in nonmyelinated regions. Both regional K1 and MK-4 increased with K1 intake (P<0.05). Sphingolipid distribution varied across brain regions (P<0.001) but was not affected by K1 intake. In the L and A groups but not the H group, brain MK-4 concentration was positively correlated with the concentrations of sulfatides (L, r=0.518; A, r=0.479) and sphingomyelin (L, r=0.515; A, r=0.426), and negatively correlated with ganglioside concentration (L, r=-0.398); A, r=-0.353). Sphingolipids are involved in major cellular events such as cell proliferation, differentiation and survival. The strong associations reported here between brain MK-4 and sphingomyelin, sulfatides and gangliosides suggest that this vitamer may play an important role in the brain.
To gain insight into the function and regulation of malonyl-CoA decarboxylase (MCD) we have cloned rat MCD cDNA from a differentiated insulin-secreting pancreatic beta-cell-line cDNA library. The full-length cDNA sequence shows 69% identity with the cDNA cloned previously from the goose uropygial gland, and predicts a 492 amino acid protein of 54.7 kDa. The open reading frame contains an N-terminal mitochondrial targeting sequence and the C-terminal part of the enzyme ends with a peroxisomal (Ser-Lys-Leu) targeting motif. Since the sequence does not reveal hydrophobic domains, MCD is most likely expressed in the mitochondrial matrix and inside the peroxisomes. A second methionine residue, located 3' of the mitochondrial presequence, might be the first amino acid of a putative cytosolic MCD, since the nucleotide sequence around it fits fairly well with a consensus Kozak site for translation initiation. However, primer extension detects the presence of only one transcript initiating upstream of the first ATG, indicating that the major, if not exclusive, transcript expressed in the pancreatic beta-cell encodes MCD with its mitochondrial presequence. The sequence also shows multiple possible sites of phosphorylation by casein kinase II and protein kinase C. mRNA tissue-distribution analysis indicates a transcript of 2.2 kb, and that the MCD gene is expressed over a wide range of rat tissues. The distribution of the enzyme shows a broad range of activities from very low in the brain to elevated in the liver and heart. The results provide the foundations for further studies of the role of MCD in lipid metabolism and metabolic signalling in various tissues.
Here we report the partial purification and characterization of wheat mitochondrial ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25). Our purification scheme involves ammonium sulfate fractionation and chromatography on anion-exchange, hydroxyapatite, and affinity columns. Our results indicate that the enzyme is stable over a broad range of temperatures with highest activity at 37°C. High activity is seen at alkaline pH with a maximum at pH 9. The enzyme exhibits maximal activity in the presence of 10 mM MgCl2 and is inhibited by (at least) 100 mM NaCl. We also show that a second form of this enzyme exists in the wheat cytosolic fraction. This enzyme shares many features with the mitochondrial enzyme but differs from the mitochondrial enzyme in its elution profile from hydroxyapatite and in its response to manganese.Key words: tRNA nucleotidyltransferase, wheat, mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.