This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal
In elastic wave systems, combining the powerful concepts of resonance and spatial grading within structured surface arrays enable resonant metasurfaces to exhibit broadband wave trapping, mode conversion from surface (Rayleigh) waves to bulk (shear) waves, and spatial frequency selection. Devices built around these concepts allow for precise control of surface waves, often with structures that are subwavelength, and utilise Rainbow trapping that separates the signal spatially by frequency. Rainbow trapping yields large amplifications of displacement at the resonator positions where each frequency component accumulates. We investigate whether this amplification, and the associated control, can be used to create energy harvesting devices; the potential advantages and disadvantages of using graded resonant devices as energy harvesters is considered. We concentrate upon elastic plate models for which the A 0 mode dominates, and take advantage of the large displacement amplitudes in graded resonant arrays of rods, to design innovative metasurfaces that trap waves for enhanced piezoelectric energy harvesting. Numerical simulation allows us to identify the advantages of such graded metasurface devices and quantify its efficiency, we also develop accurate models of the phenomena and extend our analysis to that of an elastic half-space and Rayleigh surface waves.
This work presents a strategy to design three-dimensional elastic periodic structures endowed with complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This result relies on a proper organization of the modal characteristics, and it is validated by performing numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission spectrum of the finite structure, obtaining good agreement with numerical predictions. The presented strategy paves the way for the development of a class of periodic structures to be used in robust and reliable wave attenuation over a wide frequency band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.