The present work aims at the development of an advanced control system implemented through Adams/View-Matlab/ Simulink co-simulation for a high-performance motorcycle dynamics study. In particular, the purpose of this study is to create a model able to consider several aspects of the rider-motorbike dynamic simulation and its control system, generally treated separately in the literature, making also use of an original and accurate modelling of the rider. From a previous multi-body model of motorcycle/virtual rider, developed by the authors, a flexible tool is created to simulate system dynamics to follow any trajectory at a prescribed velocity profile. Considering high-performance motorcycle dynamics are greatly influenced by the rider's weight, his movements have been accurately replicated to obtain the most realistic results. To simulate the passive impedance of rider's arms, a torque was applied to the steering as per the literature. The aerodynamic force was modelled as a function of kinematics variables and rider's posture. The control system is very flexible and adaptable to different manoeuvres realistically reproducing engine and braking performance, steering torque and rider movements. Numerical results show that the control system can accurately direct the motorcycle/rider system along an entire lap of the Monza circuit, following a desired path at a given velocity profile. The model developed allows a complete view of the motorbike-rider dynamic behaviour thus being useful during both design phase and setup , with a considerable saving in terms of both cost and time; it can also evaluate the influence on the system dynamics of riders with different anatomical characteristics and driving styles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.