Background
In patients with Multiple Sclerosis (pwMS) disease-modifying therapies (DMTs) affects immune response to antigens. Therefore, post-vaccination serological assessments are needed to evaluate the effect of the vaccine on SARS-CoV-2 antibody response.
Methods
We designed a prospective multicenter cohort study enrolling pwMS who were scheduled for SARS-Cov-2 vaccination with mRNA vaccines (BNT162b2, Pfizer/BioNTech,Inc or mRNA-1273, Moderna Tx,Inc). A blood collection before the first vaccine dose and 4 weeks after the second dose was planned, with a centralized serological assessment (electrochemiluminescence immunoassay, ECLIA, Roche-Diagnostics). The log-transform of the antibody levels was analyzed by multivariable linear regression.
Findings
780 pwMS (76% BNT162b2 and 24% mRNA-1273) had pre- and 4-week post-vaccination blood assessments. 87 (11·2%) were untreated, 154 (19·7%) on ocrelizumab, 25 (3·2%) on rituximab, 85 (10·9%) on fingolimod, 25 (3·2%) on cladribine and 404 (51·7%) on other DMTs. 677 patients (86·8%) had detectable post-vaccination SARS-CoV-2 antibodies. At multivariable analysis, the antibody levels of patients on ocrelizumab (201-fold decrease (95%CI=128–317),
p
< 0·001), fingolimod (26-fold decrease (95%CI=16–42),
p <
0·001) and rituximab (20-fold decrease (95%CI=10–43),
p <
0·001) were significantly reduced as compared to untreated patients. Vaccination with mRNA-1273 resulted in a systematically 3·25-fold higher antibody level (95%CI=2·46–4·27) than with the BNT162b2 vaccine (
p <
0·001). The antibody levels on anti-CD20 therapies correlated to the time since last infusion, and rituximab had longer intervals (mean=386 days) than ocrelizumab patients (mean=129 days).
Interpretation
In pwMS, anti-CD20 treatment and fingolimod led to a reduced humoral response to mRNA-based SARS-CoV-2 vaccines. As mRNA-1273 elicits 3·25-higher antibody levels than BNT162b2, this vaccine may be preferentially considered for patients under anti-CD20 treatment or fingolimod. Combining our data with those on the cellular immune response to vaccines, and including clinical follow-up, will contribute to better define the most appropriate SARS-CoV-2 vaccine strategies in the context of DMTs and MS.
Funding
FISM[2021/Special-Multi/001]; Italian Ministry of Health‘Progetto Z844A 5 × 1000′.
Visual hallucinations (VHs) represent a frequent and disturbing complication of Parkinson's disease. Evidence suggests that VH can be related to central cholinergic dysfunction. Short-latency afferent inhibition (SAI) technique gives the opportunity to test an inhibitory cholinergic circuit in the human cerebral motor cortex. This inhibition of motor-evoked potentials can be observed when transcranial magnetic stimulation is delivered with a delay ranging from 2 to 8 ms, after a peripheral nerve afferent input has reached the somatosensory cortex. We applied SAI technique in 10 non-demented patients with Parkinson's disease with VHs, in 12 non-demented patients with Parkinson's disease without VHs (NVH-pts) and in 11 age-matched normal controls. All patients with Parkinson's disease underwent a battery of neuropsychological tests to assess frontal and visuospatial functions, memory and attention. SAI was significantly reduced in patients with VHs compared with controls and patients without VHs. Neuropsychological examination showed a mild cognitive impairment in 16 out of 22 patients with Parkinson's disease. In addition, we found that in our patients with VHs, performance of some tasks evaluating visuospatial functions and attentional/frontal lobe functions was significantly more impaired than in patients without VHs. SAI abnormalities, presence of VH and neuropsychological results strongly support the hypothesis of cholinergic dysfunction in some patients with Parkinson's disease, who will probably develop a dementia. A follow-up study of our patients is required to verify whether SAI abnormalities can predict a future severe cognitive decline. Moreover, SAI can also be very useful to follow-up the efficacy of anti-cholinesterase therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.