The analysis of the Helmholtz equation is shown to lead to an exact Hamiltonian system describing in terms of ray trajectories, for a stationary refractive medium, a very wide family of wave-like phenomena (including diffraction and interference) going much beyond the limits of the geometrical optics ("eikonal") approximation, which is contained as a simple limiting case. Due to the fact, moreover, that the time independent Schrödinger equation is itself a Helmholtz-like equation, the same mathematics holding for a classical optical beam turns out to apply to a quantum particle beam moving in a stationary force field, and leads to a system of Hamiltonian equations providing exact and deterministic particle trajectories and dynamical laws, and containing the laws of Classical Mechanics in the eikonal limit.
Both classical and wave-mechanical monochromatic waves may be treated in terms of exact ray-trajectories (encoded in the structure itself of Helmholtz-like equations) whose mutual coupling is the one and only cause of any diffraction and interference process. In the case of Wave Mechanics, de Broglie's merging of Maupertuis's and Fermat's principles (see Section 3) provides, without resorting to the probability-based guidance-laws and flow-lines of the Bohmian theory, the simple law addressing particles along the Helmholtz rays of the relevant matter waves. The purpose of the present research was to derive the exact Hamiltonian ray-trajectory systems concerning, respectively, classical electromagnetic waves, non-relativistic matter waves and relativistic matter waves. We faced then, as a typical example, the numerical solution of non-relativistic wave-mechanical equation systems in a number of numerical applications, showing that each particle turns out to "dances a wave-mechanical dance" around its classical trajectory, to which it reduces when the ray-coupling is neglected. Our approach reaches the double goal of a clear insight into the mechanism of wave-particle duality and of a reasonably simple computability. We finally compared our exact dynamical approach, running as close as possible to Classical Mechanics, with the hydrodynamic Bohmian theory, based on fluid-like "guidance laws". Journal of Applied Mathematics and Physics redly leading to Bohm's Mechanics [2]-[7], with its probability-based guidance-laws and hydrodynamic flow-lines.
Contrary to a wide-spread commonplace, an exact, ray-based treatment holding for any kind of monochromatic wave-like features (such as diffraction and interference) is provided by the structure itself of the Helmholtz equation. This observation allows to dispel -in apparent violation of the Uncertainty Principle -another commonplace, forbidding an exact, trajectory-based approach to Wave Mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.