In this paper, we address the problem of how to efficiently sample the radiated field in the framework of near-field measurement techniques. In particular, the aim of the article is to find a sampling strategy for which the discretized model exhibits the same singular values of the continuous problem. The study is done with reference to a strip current whose radiated electric field is observed in the near zone over a bounded line parallel to the source. Differently from far zone configurations, the kernel of the related eigenvalue problem is not of convolution type, and not band-limited. Hence, the sampling-theory approach cannot be directly applied to establish how to efficiently collect the data. In order to surmount this drawback, we first use an asymptotic approach to explicit the kernel of the eigenvalue problem. After, by exploiting a warping technique, we recast the original eigenvalue problem in a new one. The latter, if the observation domain is not too large, involves a convolution operator with a band-limited kernel. Hence, in this case the sampling-theory approach can be applied, and the optimal locations of the sampling points can be found. Differently, if the observation domain is very extended, the kernel of the new eigenvalue problem is still not convolution. In this last case, in order to establish how to discretize the continuous model, we perform a numerical analysis.
In this paper, the question of evaluating the dimension of data space in an inverse source problem from near-field phaseless data is addressed. The study is developed for a 2D scalar geometry made up by a magnetic current strip whose square magnitude of the radiated field is observed in near non-reactive zone on multiple lines parallel to the source. With the aim of estimating the dimension of data space, at first, the lifting technique is exploited to recast the quadratic model as a linear one. After, the singular values decomposition of such linear operator is introduced. Finally, the dimension of data space is evaluated by quantifying the number of “relevant” singular values. In the last part of the article, some numerical simulations that corroborate the analytical estimation of data space dimension are shown.
In this article, we tackle the question of evaluating the dimension of the data space in the phase retrieval problem. With the aim to achieve this task, we first exploit the lifting technique to recast the quadratic model as a linear one. After that, we evaluate analytically the singular values of the lifting operator, and we quantify the dimension of the data space by counting the number of “significant” singular values. In the last part of the article, we show some numerical results in order to corroborate our analytical prediction on the singular values’ behavior of the lifting operator and on the dimension of the data space. The analysis is performed for a 2D scalar geometry consisting of an electric current strip whose square magnitude of the radiated field is observed on multiple arcs of circumference in Fresnel zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.