A previously described sequence-based epidemiological typing method for clinical and environmental isolates of Legionella pneumophila serogroup 1 was extended by the investigation of three additional gene targets and modification of one of the previous targets. Excellent typeability, reproducibility, and epidemiological concordance were determined for isolates belonging to both serogroup 1 and the other serogroups investigated. Gene fragments were amplified from genomic DNA, and PCR amplicons were sequenced by using forward and reverse primers. Consensus sequences are entered into an online database, which allows the assignment of individual allele numbers. The resulting sequence-based type or allelic profile comprises a string of the individual allele numbers separated by commas, e.g., 1,4,3,1,1,1, in a predetermined order, i.e., flaA, pilE, asd, mip, mompS, and proA. The index of discrimination (D) obtained with these six loci was calculated following analysis of a panel of 79 unrelated clinical isolates. A D value of >0.94 was obtained, and this value appears to be sufficient for use in the epidemiological investigation of outbreaks caused by L. pneumophila. The D value rose to 0.98 when the results of the analysis were combined with those of monoclonal antibody subgrouping. Sequence-based typing of L. pneumophila is epidemiologically concordant and discriminatory, and the data are easily transportable. This consensus method will assist in the epidemiological investigation of L. pneumophila infections, especially travel-associated cases, by which it will allow a rapid comparison of isolates obtained in more than one country.
In situ hybridization was used to study the spatio-temporal distribution of phototrophic sulfur bacteria in the permanent chemocline of meromictic Lake Cadagno, Switzerland. At all four sampling times during the year the numerically most important phototrophic sulfur bacteria in the chemocline were small-celled purple sulfur bacteria of two yet uncultured populations designated D and F. Other small-celled purple sulfur bacteria (Amoebobacter purpureus and Lamprocystis roseopersicina) were found in numbers about one order of magnitude lower. These numbers were similar to those of large-celled purple sulfur bacteria (Chromatium okenii) and green sulfur bacteria that almost entirely consisted of Chlorobium phaeobacteroides. In March and June when low light intensities reached the chemocline, cell densities of all populations, with the exception of L. roseopersicina, were about one order of magnitude lower than in August and October when light intensities were much higher. Most populations were evenly distributed throughout the whole chemocline during March and June, while in August and October a microstratification of populations was detected suggesting specific eco-physiological adaptations of different populations of phototrophic sulfur bacteria to the steep physico-chemical gradients in the chemocline of Lake Cadagno.
Seven gene loci of Legionella pneumophila serogroup 1 were analyzed as potential epidemiological typing markers to aid in the investigation of legionella outbreaks. The genes chosen included four likely to be selectively neutral (acn, groES, groEL, and recA) and three likely to be under selective pressure (flaA, mompS, and proA). Oligonucleotide primers were designed to amplify 279-to 763-bp fragments from each gene. Initial sequence analysis of the seven loci from 10 well-characterized isolates of L. pneumophila serogroup 1 gave excellent reproducibility (R) and epidemiological concordance (E) values (R ؍ 1.00; E ؍ 1.00). The three loci showing greatest discrimination and nucleotide variation, flaA, mompS, and proA, were chosen for further study. Indices of discrimination (D) were calculated using a panel of 79 unrelated isolates. Single loci gave D values ranging from 0.767 to 0.857, and a combination of all three loci resulted in a D value of 0.924. When all three loci were combined with monoclonal antibody subgrouping, the D value was 0.971. Sequence-based typing of L. pneumophila serogroup 1 using only three loci is epidemiologically concordant and highly discriminatory and has the potential to become the new "gold standard" for the epidemiological typing of L. pneumophila.
Legionellosis (infection by members of the genus Legionella)can range from mild respiratory illness to acute life-threatening pneumonia and is invariably acquired from an environmental source. Characterization of clinical and epidemiologically linked environmental isolates of Legionella is invaluable in locating the source and extent of infection, allowing implementation of corrective measures and treatment to prevent further infection. The majority of cases of legionellosis are caused by Legionella pneumophila, particularly serogroup (sg) 1 (20). Previous studies have demonstrated the utility of differentiating isolates belonging to this serogroup of L. pneumophila in order to confirm or refute epidemiological associations in outbreak investigations (5,19,22,28,29), but only in a local setting.Isolates of L. pneumophila sg 1 can be rapidly subtyped by using monoclonal antibody (MAb) subgrouping with panels based on the international MAb subgrouping panel (13,14).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.