Quantitative information on the ecophysiology of individual microorganisms is generally limited because it is difficult to assign specific metabolic activities to identified single cells. Here, we develop and apply a method, Halogen In Situ HybridizationSecondary Ion Mass Spectroscopy (HISH-SIMS), and show that it allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. Using HISH-SIMS, individual cells of the anaerobic, phototropic bacteria Chromatium okenii, Lamprocystis purpurea, and Chlorobium clathratiforme inhabiting the oligotrophic, meromictic Lake Cadagno were analyzed with respect to H 13 CO3 ؊ and 15 NH4 ؉ assimilation. Metabolic rates were found to vary greatly between individual cells of the same species, showing that microbial populations in the environment are heterogeneous, being comprised of physiologically distinct individuals. Furthermore, C. okenii, the least abundant species representing Ϸ0.3% of the total cell number, contributed more than 40% of the total uptake of ammonium and 70% of the total uptake of carbon in the system, thereby emphasizing that numerically inconspicuous microbes can play a significant role in the nitrogen and carbon cycles in the environment. By introducing this quantification method for the ecophysiological roles of individual cells, our study opens a variety of possibilities of research in environmental microbiology, especially by increasing the ability to examine the ecophysiological roles of individual cells, including those of less abundant and less active microbes, and by the capacity to track not only nitrogen and carbon but also phosphorus, sulfur, and other biological element flows within microbial communities.anaerobic phototrophs ͉ nanoSIMS
In situ hybridization was used to study the spatio-temporal distribution of phototrophic sulfur bacteria in the permanent chemocline of meromictic Lake Cadagno, Switzerland. At all four sampling times during the year the numerically most important phototrophic sulfur bacteria in the chemocline were small-celled purple sulfur bacteria of two yet uncultured populations designated D and F. Other small-celled purple sulfur bacteria (Amoebobacter purpureus and Lamprocystis roseopersicina) were found in numbers about one order of magnitude lower. These numbers were similar to those of large-celled purple sulfur bacteria (Chromatium okenii) and green sulfur bacteria that almost entirely consisted of Chlorobium phaeobacteroides. In March and June when low light intensities reached the chemocline, cell densities of all populations, with the exception of L. roseopersicina, were about one order of magnitude lower than in August and October when light intensities were much higher. Most populations were evenly distributed throughout the whole chemocline during March and June, while in August and October a microstratification of populations was detected suggesting specific eco-physiological adaptations of different populations of phototrophic sulfur bacteria to the steep physico-chemical gradients in the chemocline of Lake Cadagno.
The nitrogen cycling of Lake Cadagno was investigated by using a combination of biogeochemical and molecular ecological techniques. In the upper oxic freshwater zone inorganic nitrogen concentrations were low (up to approximately 3.4 microM nitrate at the base of the oxic zone), while in the lower anoxic zone there were high concentrations of ammonium (up to 40 microM). Between these zones, a narrow zone was characterized by no measurable inorganic nitrogen, but high microbial biomass (up to 4 x 10(7) cells ml(-1)). Incubation experiments with (15)N-nitrite revealed nitrogen loss occurring in the chemocline through denitrification (approximately 3 nM N h(-1)). At the same depth, incubations experiments with (15)N(2)- and (13)C(DIC)-labelled bicarbonate, indicated substantial N(2) fixation (31.7-42.1 pM h(-1)) and inorganic carbon assimilation (40-85 nM h(-1)). Catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and sequencing of 16S rRNA genes showed that the microbial community at the chemocline was dominated by the phototrophic green sulfur bacterium Chlorobium clathratiforme. Phylogenetic analyses of the nifH genes expressed as mRNA revealed a high diversity of N(2) fixers, with the highest expression levels right at the chemocline. The majority of N(2) fixers were related to Chlorobium tepidum/C. phaeobacteroides. By using Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS), we could for the first time directly link Chlorobium to N(2) fixation in the environment. Moreover, our results show that N(2) fixation could partly compensate for the N loss and that both processes occur at the same locale at the same time as suggested for the ancient Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.