Several factors affecting the reactivity of fly ash (FA) as a precursor for geopolymer concrete have been investigated. These include physical and chemical properties of various FA sources, inclusion of ground granulated blast furnace slag (ggbs), chemical activator dosages and curing temperature. Alkali-activated FA was found to require elevated curing temperatures and high alkali concentrations. A mixture of sodium hydroxide and sodium silicate was used and this was shown to result in high strengths, as high as 70 MPa at 28 days. The presence of silicates in solution was found to be an important parameter affecting strength. Detailed physical and chemical characterisation was carried out on thirteen FA sources from the UK. The most important factor affecting the reactivity was found to be the particle size of FA. The loss on ignition (LOI) and the amorphous content are also important parameters that need to be considered for the selection of FA for use in geopolymer concrete. The partial replacement of FA with ggbs was found to be beneficial in not only avoiding the need for elevated curing temperatures but also in improving compressive strengths. Microstructural characterisation with scanning electron microscope (SEM) coupled with energy dispersive Xray spectroscopy (EDS) was performed on FA/ggbs pastes. The reaction product of FA and ggbs in these binary systems was calcium aluminium silicate hydrate gel (C-AS -H) with inclusion of Na in the structure.
A simple process to produce sodium silicate powder from glass cullet has been developed. A mixture of glass powder, sodium hydroxide powder, and water was heated at temperatures of 150 to 330 °C. The effects of glass to NaOH ratio, temperature and duration, inclusion of water and fineness of NaOH were investigated. Fly ash and fly ash/GGBS blends were the precursors for alkali activated binder (AAB) mortars produced with this sodium silicate. Compressive strengths were similar to or better than those obtained with commercially available sodium silicate and sodium hydroxide solutions. FT-IR tests suggested that the reactivity of the glass derived sodium silicate powder was related to the number of non-bridging oxygen atoms in the silicate structure. Cost comparison between AAB and Portland cement concretes gave similar results for normal strength concretes (35 MPa). AAB concretes with higher strengths (50 and 70 MPa) can be cheaper than equivalent traditional concrete.
The effects of paste volume, water content and precursor blend on consistency, setting time and compressive strength of alkali activated concrete (AAC) produced with fly ash (FA) and ground granulated blast furnace slag (GGBS) have been investigated with the aim of developing a suitable mix design procedure. Paste volumes in the range 30%-33% were found not to influence the compressive strength but did influence the consistency of the mixes. The water-to-solid ratio was found to influence compressive strength and setting time. Increasing GGBS content in the binder blend resulted in an increase of the compressive strength, but higher GGBS content caused also early setting which may be undesirable. A mix design procedure has been developed and has been used to determine the constituent mix proportions for three classes of concretes, i.e. (a) a ready-mix concrete with nominal strength 35 MPa, (b) a typical structural concrete with nominal strength 50 MPa, and (c) a high strength concrete for precast applications with nominal strength 70 MPa. Cost analysis was carried out to compare the AAC with Portland cement concretes with similar properties. Normal strength Portland cement concrete (PC), as typically used in ready mix industry has been shown to be less expensive than AAC. However, alkali activated concrete can be competitively priced for high strength concretes. An empirical step-by-step procedure is presented for selecting trial mix proportions for concretes with a range of consistency values, setting times and cube compressive strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.