The principles driving the organization of the ventral object-processing stream remain unknown. Here, we show that stimulus-specific repetition suppression (RS) in one region of the ventral stream is biased according to motor-relevant properties of objects. Quantitative analysis confirmed that this result was not confounded with similarity in visual shape. A similar pattern of biases in RS according to motor-relevant properties of objects was observed in dorsal stream regions in the left hemisphere. These findings suggest that neural specificity for "tools" in the ventral stream is driven by similarity metrics computed over motor-relevant information represented in dorsal structures. Support for this view is provided by converging results from functional connectivity analyses of the fMRI data and a separate neuropsychological study. More generally, these data suggest that a basic organizing principle giving rise to "category specificity" in the ventral stream may involve similarity metrics computed over information represented elsewhere in the brain.
According to the facial feedback hypothesis, people's affective responses can be influenced by their own facial expression (e.g., smiling, pouting), even when their expression did not result from their emotional experiences. For example, Strack, Martin, and Stepper (1988) instructed participants to rate the funniness of cartoons using a pen that they held in their mouth. In line with the facial feedback hypothesis, when participants held the pen with their teeth (inducing a "smile"), they rated the cartoons as funnier than when they held the pen with their lips (inducing a "pout"). This seminal study of the facial feedback hypothesis has not been replicated directly. This Registered Replication Report describes the results of 17 independent direct replications of Study 1 from Strack et al. (1988), all of which followed the same vetted protocol. A meta-analysis of these studies examined the difference in funniness ratings between the "smile" and "pout" conditions. The original Strack et al. (1988) study reported a rating difference of 0.82 units on a 10-point Likert scale. Our meta-analysis revealed a rating difference of 0.03 units with a 95% confidence interval ranging from -0.11 to 0.16.
In recent years we have witnessed an increasing interest in food processing and eating behaviors. This is probably due to several reasons. The biological relevance of food choices, the complexity of the food-rich environment in which we presently live (making food-intake regulation difficult), and the increasing health care cost due to illness associated with food (food hazards, food contamination, and aberrant food-intake). Despite the importance of the issues and the relevance of this research, comprehensive and validated databases of stimuli are rather limited, outdated, or not available for non-commercial purposes to independent researchers who aim at developing their own research program. The FoodCast Research Image Database (FRIDa) we present here includes 877 images belonging to eight different categories: natural-food (e.g., strawberry), transformed-food (e.g., french fries), rotten-food (e.g., moldy banana), natural-non-food items (e.g., pinecone), artificial food-related objects (e.g., teacup), artificial objects (e.g., guitar), animals (e.g., camel), and scenes (e.g., airport). FRIDa has been validated on a sample of healthy participants (N = 73) on standard variables (e.g., valence, familiarity, etc.) as well as on other variables specifically related to food items (e.g., perceived calorie content); it also includes data on the visual features of the stimuli (e.g., brightness, high frequency power, etc.). FRIDa is a well-controlled, flexible, validated, and freely available (http://foodcast.sissa.it/neuroscience/) tool for researchers in a wide range of academic fields and industry.
Previous studies have suggested that imitators can reproduce known gestures shown by a model using a semantic, indirect route, and novel gestures using a sublexical, direct route. In the present study we aimed at testing the validity of such a dual-route model of action imitation. Patients with either left-brain damage (LBD) or right-brain damage (RBD) were tested on an action imitation task. Actions were either meaningful (n = 20) or meaningless (n = 20), and were presented in an intermingled list and, on a different day, in separate lists. We predicted that, in the mixed condition, patients would use a direct route to imitate meaningful and meaningless actions, as it allows the imitation of both action types. In the blocked condition, patients were expected to select the semantic route for meaningful actions and the direct route for meaningless actions. As hypothesized, none of the 32 patients showed dissociations between imitation of meaningful and meaningless actions in the mixed presentation. In contrast, eight patients showed a dissociation between imitation of meaningful actions and imitation of meaningless actions in the blocked presentation. Moreover, two of these patients showed a classical double dissociation between the imitation of the two action types. Results were interpreted in support of the validity of a dual-route model for explaining action imitation. We argue that the decrease in imitation of meaningful actions, relative to meaningless actions, is caused by a damage of the semantic route, and that the decline in imitation of meaningless actions, relative to meaningful actions, is produced by a breakdown of the direct route. The brain areas that were lesioned in all six LBD patients who showed a dissociation were in the superior temporal gyrus and the angular gyrus, whereas the two RBD subjects had common lesions of the pallidum and of the putamen. The brain structures affected in our patients with selective apraxia are consistent with those reported before in other neuropsychological reports. They are also in agreement with areas found activated in imaging studies in which the neural mechanisms underlying imitation were examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.