Background: Bacteriocin-producing lactic acid bacteria are commonly used as natural protective cultures. Among them, strains of the genus Pediococcus are particularly interesting for their ability to produce pediocin, a broad spectrum antimicrobial peptide with a strong antagonistic activity against the food-borne pathogen Listeria monocytogenes. Furthermore, there is increasing interest in isolating new bacteriocin-producing strains of human intestinal origin that could be developed for probiotic effects and inhibition of pathogenic bacteria in the gut. In this work, we typed a new strain, co-isolated from baby faeces together with a Bifidobacterium thermophilum strain, and characterized its proteinaceous compound with strong antilisterial activity.
Background: Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora.
The present investigation is carried out to study the invitro cytotoxicity of ethanol extract of Syzygium samarangense leaves on HeLa cell line by using MTT assay. Ethanol extract of S. samarangense showed concentration dependent activity on HeLa cell line with IC50 value of 40.5 μg/ml which shows that ethanol extract of S. samarangense posses significant cytoxicity.Moreover the preliminary phytochemical screening showed the presence of fatty acids, alkaloids, flavonoids, terphenoids, saponins, tannins and steroids which are responsible for its cytotoxicity. There are only a few reports are available for cytotoxicity of ethanol extract of S. samarangense.
Susceptibility of Malassezia furfur to certain medium chain fatty acids shed light onto novel strategies to control dandruff. This study explored antidandruff activity of the fatty acids and other bioactive compounds from flowers of Cassia auriculata and Cassia alata. The idea was supplementing the growth medium with fatty acids which are inhibitory to Malassezia so that plant-based antidandruff formulations could be developed based on the results. Chloroform and ethanolic flower extracts were tested there in vitro efficacy against M. furfur and the potential antidandruff compounds were identified by gas chromatography-mass spectrophotometry (GC-MS). Minimum inhibitory concentrations were determined for both the extracts and IC50 values of 50 and 88 µM for chloroform extract of C. auriculata and C. alata were recorded. For ethanol extract, IC50 values of 75 and 70 µM were exhibited by C. auriculata and C. alata, respectively. Inhibition of M. furfur through fatty acids from Cassia is the first report, and it is possible to include specific fatty acids in the growth media to inhibit the growth of Malassezia which could be later served as lead molecules in antidandruff formulations. Further, the presence of citronellol, pinitol, anthracenedione and chrysine in Cassia flower extracts and their antidandruff activity reported in this study needed further research on those compounds to formulate effective treatment of Malassezia associated diseases.
Present study aimed to evaluate the chemical composition and biological activity for methanolic extract
of Bauhinia tomentosa (Linn.) leaves grown in Western Ghats region of South India. The preliminary
phytochemical screening tests revealed the presence of steroids, alkaloids, terpenoids, flavonoids,
glycosides and phenolic compounds in the leaf extract. A total of 19 compounds were identified
through gas chromatography-mass spectroscopy (GC-MS) analysis of methanolic extract of B.
tomentosa. The major compounds identified were phytol (23.96%), n-hexadecanoic acid (11.62%),
squalene (8.85%) and the minor compounds are trans-bis(2-methylpropyl)-4,6-dioxane(0.13%),
dihydro-cis-α-copaene-8-ol (0.14%), tetradecanoic acid (0.81%), respectively. Antibacterial activity
of the extract showed the zone of inhibition 18 mm at 200 μg/mL against S. aureus, followed by 15 and
16 mm against S. anginosus, K. pneumoniae at 200 μg/mL, respectively. Antioxidant activity of
methanolic extract of B. tomentosa leaves showed the maximum IC50 value with 75.07 % of scavenging
activity at the concentration of 5 μg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.