The paper reports an experimental study of die-casting dies with conformal cooling fabricated by direct-metal additive techniques. The main objective is to compare the benefits and limitations of the application to what has been widely discussed in literature in the context of plastics injection molding.Selective laser melting was used to fabricate an impression block with conformal cooling channels, designed according to part geometry with the aid of process simulation. The tool was used in the manufacture of sample batches of zinc alloy castings, after being fitted on an existing die in place of a machined impression block with conventional straight-line cooling channels. Different combinations of process parameters were tested to exploit the improved performance of the cooling system. Test results show that conformal cooling improves the surface finish of castings due to a reduced need of spray cooling, which is allowed by a higher and more uniform cooling rate. Secondary benefits include reduction of cycle time and shrinkage porosity. KeywordsSelective laser melting; rapid tooling; die casting; conformal cooling; spray cooling; surface finish. 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 1 Title pageClick here to download Manuscript: titlepage.doc Click here to view linked References 1 2 3 4 5 6 7 8 SLM tooling for die casting with conformal cooling channels AbstractThe paper reports an experimental study of die-casting dies with conformal cooling fabricated by direct-metal additive techniques. The main objective is to compare the benefits and limitations of the application to what has been widely discussed in literature in the context of plastics injection molding.Selective laser melting was used to fabricate an impression block with conformal cooling channels, designed according to part geometry with the aid of process simulation. The tool was used in the manufacture of sample batches of zinc alloy castings, after being fitted on an existing die in place of a machined impression block with conventional straight-line cooling channels. Different combinations of process parameters were tested to exploit the improved performance of the cooling system. Test results show that conformal cooling improves the surface finish of castings due to a reduced need of spray cooling, which is allowed by a higher and more uniform cooling rate. Secondary benefits include reduction of cycle time and shrinkage porosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.