Summary Soil nutrient availability can strongly affect root traits. In tropical forests, phosphorus (P) is often considered the main limiting nutrient for plants. However, support for the P paradigm is limited, and N and cations might also control tropical forests functioning. We used a large‐scale experiment to determine how the factorial addition of nitrogen (N), P and cations affected root productivity and traits related to nutrient acquisition strategies (morphological traits, phosphatase activity, arbuscular mycorrhizal colonisation and nutrient contents) in a primary rainforest growing on low‐fertility soils in Central Amazonia after 1 yr of fertilisation. Multiple root traits and productivity were affected. Phosphorus additions increased annual root productivity and root diameter, but decreased root phosphatase activity. Cation additions increased root productivity at certain times of year, also increasing root diameter and mycorrhizal colonisation. P and cation additions increased their element concentrations in root tissues. No responses were detected with N addition. Here we showed that rock‐derived nutrients determined root functioning in low‐fertility Amazonian soils, demonstrating not only the hypothesised importance of P, but also highlighting the role of cations. The changes in fine root traits and productivity indicated that even slow‐growing tropical rainforests can respond rapidly to changes in resource availability.
BackgroundRhodnius prolixus is a blood-feeding insect that can transmit Trypanosoma cruzi and Trypanosoma rangeli to vertebrate hosts. Recently, genomic resources for invertebrate vectors of human pathogens have increased significantly, and R. prolixus has been one of the main species studied among the triatomines. However, the paucity of information on many of the fundamental molecular aspects of this species limits the use of the available genomic information. The present study aimed to facilitate gene expression studies by identifying the most suitable reference genes for the normalization of mRNA expression data from qPCR.ResultsThe expression stability of five candidate reference genes (18S rRNA, GAPDH, β-actin, α-tubulin and ribosomal protein L26) was evaluated by qPCR in two tissues (salivary gland and intestine) and under different physiological conditions: before and after blood feeding and after infection with T. cruzi or T. rangeli. The results were analyzed with three software programs: geNorm, NormFinder and BestKeeper. All of the evaluated candidate genes proved to be acceptable as reference genes, but some were found to be more appropriate depending on the experimental conditions. 18S, GAPDH and α-tubulin showed acceptable stability for studies in all of the tissues and experimental conditions evaluated. β-actin, one of the most widely used reference genes, was confirmed to be one of the most suitable reference genes in studies with salivary glands, but it had the lowest expression stability in the intestine after insect blood feeding. L26 was identified as the poorest reference gene in the studies performed.ConclusionsThe expression stability of the genes varies in different tissue samples and under different experimental conditions. The results provided by three statistical packages emphasize the suitability of all five of the tested reference genes in both the crop and the salivary glands with a few exceptions. The results emphasise the importance of validating reference genes for qRT-PCR analysis in R. prolixus studies.
The productivity of rainforests growing on highly-weathered tropical soils is expected to be limited by phosphorus (P) availability 1 . Yet, controlled fertilisation experiments have failed to demonstrate a dominant role for P in controlling tropical forest net primary productivity (NPP). Recent syntheses have demonstrated that responses to N addition are as large as to P 2 , and adaptations to low P availability appear to allow NPP to be maintained across major soil P gradients 3 . Thus, the extent to which P availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterised by soils even more depleted in P than where most tropical fertilisation experiments have previously taken place 2 . Thus, we established the first P, nitrogen (N), and base cation addition experiment in an old growth Amazon rainforest, with the site's low soil P content representative of ~60% of the basin. Here we show that NPP increased exclusively with P addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of P limitation of NPP suggests that P availability may restrict Amazon forest responses to CO2 fertilisation 4 , with major implications for future carbon sequestration and forest resilience to climate change.
1. Mega dams in lowland tropical forests often create large archipelagos, leading to biodiversity decay and disruption of ecosystem functioning in remnant habitat islands.2. We investigated the functional diversity and functional trait filtering of aerial insectivorous bats in both insular forest patches created by a vast ~30-year-old hydropower reservoir and the adjacent mainland continuous forest in Central Amazonia.
Abstract. Most land surface models (LSMs), i.e. the land components of Earth system models (ESMs), include representation of nitrogen (N) limitation on ecosystem productivity. However, only a few of these models have incorporated phosphorus (P) cycling. In tropical ecosystems, this is likely to be important as N tends to be abundant, whereas the availability of rock-derived elements, such as P, can be very low. Thus, without a representation of P cycling, tropical forest response in areas such as Amazonia to rising atmospheric CO2 conditions remain highly uncertain. In this study, we introduced P dynamics and its interactions with the N and carbon (C) cycles into the Joint UK Land Environment Simulator (JULES). The new model (JULES-CNP) includes the representation of P stocks in vegetation and soil pools, as well as key processes controlling fluxes between these pools. We develop and evaluate JULES-CNP using in situ data collected at a low-fertility site in the central Amazon, with a soil P content representative of 60 % of soils across the Amazon basin, to parameterize, calibrate, and evaluate JULES-CNP. Novel soil and plant P pool observations are used for parameterization and calibration, and the model is evaluated against C fluxes and stocks and those soil P pools not used for parameterization or calibration. We then evaluate the model at additional P-limited test sites across the Amazon and in Panama and Hawaii, showing a significant improvement over the C- and CN-only versions of the model. The model is then applied under elevated CO2 (600 ppm) at our study site in the central Amazon to quantify the impact of P limitation on CO2 fertilization. We compare our results against the current state-of-the-art CNP models using the same methodology that was used in the AmazonFACE model intercomparison study. The model is able to reproduce the observed plant and soil P pools and fluxes used for evaluation under ambient CO2. We estimate P to limit net primary productivity (NPP) by 24 % under current CO2 and by 46 % under elevated CO2. Under elevated CO2, biomass in simulations accounting for CNP increase by 10 % relative to contemporary CO2 conditions, although it is 5 % lower compared to CN- and C-only simulations. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon rainforest with low-fertility soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.