Abstract. In natural biological communities, species interact with many other species. Multiple species interactions can lead to indirect ecological effects that have important fitness consequences and can cause nonadditive patterns of natural selection. Given that indirect ecological effects are common in nature, nonadditive selection may also be quite common. As a result, quantifying nonadditive selection resulting from indirect ecological effects may be critical for understanding adaptation in natural communities composed of many interacting species. We describe how to quantify the relative strength of nonadditive selection resulting from indirect ecological effects compared to the strength of pairwise selection. We develop a clear method for testing for nonadditive selection caused by indirect ecological effects and consider how it might affect adaptation in multispecies communities. We use two case studies to illustrate how our method can be applied to empirical data sets. Our results suggest that nonadditive selection caused by indirect ecological effects may be common in nature. Our hope is that trait-based approaches, combined with multifactorial experiments, will result in more estimates of nonadditive selection that reveal the relative importance of indirect ecological effects for evolution in a community context.
Despite the long-standing interest of biologists in patterns of correlation and phenotypic integration, little attention has been paid to patterns of correlation across a broad phylogenetic spectrum. We report analyses of mean phenotypic correlations among a variety of linear measurements from a wide diversity of plants and animals, addressing questions about function, development, integration and modularity. These analyses suggest that vertebrates, hemimetabolous insects and vegetative traits in plants have similar mean correlations, around 0.5. Traits of holometabolous insects are much more highly correlated, with a mean correlation of 0.84; this may be due to developmental homeostasis caused by lower spatial and temporal environmental variance during complete metamorphosis. The lowest mean correlations were those between floral and vegetative traits, consistent with Berg's ideas about functional independence between these modules. Within trait groups, the lowest mean correlations were among vertebrate head traits and floral traits (0.38–0.39). The former may be due to independence between skull modules. While there is little evidence for floral integration overall, certain sets of functionally related floral traits are highly integrated. A case study of the latter is described from wild radish flowers.
Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.