An introduced plantation tree species, Acacia mangium Willd., is becoming invasive in the Brunei region of Borneo. To examine its invasive potential, a greenhouse, additive series experiment (target-neighbour) involving seedlings of A. mangium and those of a common native heath-forest (kerangas), Melastoma beccarianum Cogn. was carried out under low and high light regimes in intra-and interspecific combinations over a 6-month period. Significant variations in growth parameters (other than biomass allocation patterns) existed amongst seedlings from different treatments. A major part of this variation in growth could be attributed to the main factors of target species, neighbour species, and competition (seedling density). For the growth variables examined, the target-species response was not consistent across light regimes. Under high light conditions, Acacia was the better competitor; the LotkaVolterra competition coefficient effect of Melastoma on Acacia was lower (a=0.30) than the effect of Acacia on Melastoma (b=0.54). However, the reverse occurred under low light conditions with Melastoma gaining the upper hand (a=1.45 and b=0.44). These results show that light (and hence disturbance) can strongly influence the pattern and intensity of both intra-and interspecific competition between invasive and local flora species. Relatively intact forest is unlikely to be invaded by Acacia trees (as they are poor competitors under this scenario). On the other hand, the Acacia trees can easily invade disturbed forests, especially those prone to recurring drought and fire, and over time convert the habitats to nearly monospecific stands, as is presently being observed in Brunei.
Stick and leaf insects (Phasmatodea) are large terrestrial herbivorous arthropods known for masquerading as plant parts such as bark, twigs and leaves. Their evolutionary history is largely shaped by convergent evolution associated with adaptive radiations on geographically isolated landmasses that have repeatedly generated ground‐dwelling ecomorphs. The members of one lineage, however, the Oriental Heteropterygidae, are morphologically rather uniform, and have a predominantly ground‐dwelling lifestyle. The phylogeny of Heteropterygidae that comprises approximately 130 described species is controversial and remains uncertain. In particular, the systematic position of the giant Jungle Nymph Heteropteryx dilatata, whose males are capable of flight and exhibit the most plesiomorphic wing morphology among extant phasmatodeans, is of major interest to the scientific community. Here, we analysed a set of seven nuclear and mitochondrial genes to infer the phylogeny of Heteropterygidae covering the group's overall diversity. The divergence time estimation and reconstruction of the historical biogeography resulted in an ancestral distribution across Sundaland with long distance dispersal events to Wallacea, the Philippines and the South Pacific. We were able to resolve the relationships among the three principal subgroups of Heteropterygidae and revealed the Dataminae, which contain entirely wingless small forms, as the sister group of Heteropteryginae + Obriminae. Within Heteropteryginae, Haaniella is recovered as paraphyletic in regard to Heteropteryx. Consequently, Heteropteryx must be considered a subordinate taxon deeply embedded within a flightless clade of stick insects. Within Obriminae, the Bornean Hoploclonia is strongly supported as the earliest diverging lineage. Based on this finding, we recognize only two tribes of equal rank among Obriminae, the Hoplocloniini trib. nov. and Obrimini sensu nov. Within the latter, we demonstrate that previous tribal assignments do not reflect phylogenetic relationships and that a basal splitting event occurred between the wing‐bearing clade Miroceramia + Pterobrimus and the remaining wingless Obrimini. The Philippine genus Tisamenus is paraphyletic with regard to Ilocano hebardi, thus, we transfer the latter species to Tisamenus as Tisamenus hebardi comb. nov. and synonymize Ilocano with Tisamenus. We discuss character transformations in the light of the new phylogenetic results and conclude that the current taxonomic diversity appears to be mainly driven by allopatry and not to be the result of niche differentiation. This radiation is thus best described as a nonadaptive radiation.
Tropical anguillid eels account for two-thirds of the 19 species in Anguilla Schrank, 1798. However, information on the species diversity, geographical distribution, and life histories of the tropical eels is very limited. Recent studies suggested that morphological species identification of the tropical anguillid eels should be validated by molecular analysis for accurate identification. After surveying for three years, two anguillid eels were found in Brunei Darussalam, Borneo Island. They were firstly identified as Anguilla marmorata Quoy & Gaimard, 1824 using morphological analysis and further gene analysis of cytochrome c oxidase subunit I (COI) confirmed the species identification. This study is the first comprehensive description of A. marmorata in Brunei Darussalam, Borneo Island. Furthermore, it is also the first study to validate two anguillid eels collected from the tropical Bonin Islands of Japan as A. marmorata by means of morphological and COI analyses. The molecular phylogenetic tree and haplotype network analyses suggest that A. marmorata found in Brunei Darussalam would belong to the North Pacific population of the westernmost distribution.
Waterfalls are geomorphic features that often partition streams into discrete zones. Our study examined aquatic communities, litter decomposition and periphyton growth rates for above-and belowwaterfall pools in Ulu Temburong National Park, Brunei. We observed higher fish densities in belowwaterfall pools (0.24 fish m -2 vs. 0.02 fish m -2 in above-waterfall pools) and higher shrimp abundance in above-waterfall pools (eight shrimp/pool vs. less than one shrimp/pool in below-waterfall pools). However, macroinvertebrate densities (excluding shrimp) were similar among both pool types. Ambient periphyton was higher in below-waterfall pools in 2013 (4.3 vs. 2.8 g m -2 in above-waterfall pools) and 2014 (4.8 vs. 3.4 g m -2 in above-waterfall pools), while periphyton growth rates varied from 0.05 to 0.26 g m -2 days -1 and were significantly higher in below-waterfall pools in 2014. Leaf litter decomposition rates (0.001 to 0.024 days -1 ) did not differ between pool types, suggesting that neither shrimp nor fish densities had consistent impacts on this ecosystem function. Regardless, this research demonstrates the varied effects of biotic and abiotic factors on community structure and ecosystem function. Our results have highlighted the importance of discontinuities, such as waterfalls, in tropical streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.