In the present work, biosorption of Cr(VI) by Nymphaea rubra was investigated in batch studies. Batch experiments were conducted to study the effect of initial sorbent dosage, solution pH and initial Cr(VI) concentration. The results showed that the equilibrium uptake capacity was increased with decrease in biomass dosage. The Cr(VI) removal was influenced by the initial chromium compound concentration. Langmuir and Freundlich adsorption isotherm models were used to represent the equilibrium data. The Freundlich isotherm model was fitted very well with the equilibrium data when compared to Langmuir isotherm model. The sorption results were analyzed for pseudo-first order and pseudo-second order kinetic model. It was observed that the kinetic data fitted very well with the pseudo-second order rate equation when compared to the pseudo-first order rate equation. Fourier transform infrared spectrum showed the presence of different functional groups in the biomass. The surface morphology of the sorbent was exemplified by SEM analysis. Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment. This paper reports the research findings of a laboratory-based study on the removal of Cr(VI) from the synthetic solution using the dried stem of N. rubra as a biosorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.