Homodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light—the quantum optical analog of the canonical position and momentum. Standard homodyne, however, suffers from a severe bandwidth limitation: while the bandwidth of optical states can span many THz, standard homodyne is inherently limited to the electronically accessible MHz-to-GHz range, leaving a dramatic gap between relevant optical phenomena and the measurement capability. We demonstrate a fully parallel optical homodyne measurement across an arbitrary optical bandwidth, effectively lifting this bandwidth limitation completely. Using optical parametric amplification, which amplifies one quadrature while attenuating the other, we measure quadrature squeezing of 1.7 dB simultaneously across 55 THz, using the pump as the only local oscillator. As opposed to standard homodyne, our measurement is robust to detection inefficiency, and was obtained with >50% detection loss. Broadband parametric homodyne opens a wide window for parallel processing of quantum information.
A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ∼80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.
We observe at record-high speed the nonclassical nature of ultra-broadband biphotons, reducing the measurement time by four orders of magnitude compared to standard techniques of Hong-Ou-Mandel interference or sum-frequency generation. We measure the quantum wave-function of the broadband bi-photons, amplitude and phase, with a pairwise 'Mach-Zehnder' quantum interferometer, where bi-photons that are generated in one nonlinear crystal are enhanced (constructive interference) or diminished (destructive interference) in another crystal, depending on the bi-photon phase. We verify the quantum nature of the interference by observing the dependence of the fringe visibility on internal loss. Since destructive interference is equivalent to an attempt to annihilate in the second crystal (by up-conversion) the bi-photons that were created in the first crystal (by down-conversion), the fringe visibility is a measure of the quantum bi-photon purity of the broadband light. The measurement speed-up is due to the large homodyne-like gain from the strong pump (∼ − 10 7 9 ) in the upconversion efficiency of single bi-photons, which enables the use of simple photo-detection of the full, ultra-high photon flux instead of single-photon/ coincidence counting.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New J. Phys. 16 (2014) 053012 Y Shaked et al New J. Phys. 16 (2014) 053012 Y Shaked et al 1 Loss between the two crystals can be modeled as a BS, with reflection (absorption) and transmission amplitude coefficients r and t, positioned between the crystals, which mixes the New J. Phys. 16 (2014) 053012 Y Shaked et al
We measure the time-energy correlation of broadband, spontaneously seeded four-wave mixing (FWM), and demonstrate time-frequency coupling effects; specifically, we observe a power-dependent splitting of the correlation in both energy and time. By pumping a photonic crystal fiber with narrowband picosecond pulses we generate FWM in a unique regime, where broadband (>100 nm) sidebands are generated that are incoherent, yet time-energy correlated. Although the observed time-energy correlation in FWM is conceptually similar to parametric down-conversion, its unique dependence on pump intensity due to self-and cross-phase-modulation effects yields spectral and temporal structure in the correlations. While these effects are minute compared to the time duration and bandwidth of the FWM sidebands, they are well observed using sum-frequency generation as a precise, ultrafast, wide-bandwidth correlation detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.