This article explores the extraction of iodine contents in Ipomoea pes-caprae plants using the modified Mohr’s method applied to a biological extract prepared in an aqueous solution. The plants were collected from three coastal regions of the Arabian Sea at Karachi coast, privileged as iodine resource areas. The size of the stem, leaves, and flowers of collected plants was measured after transportation into the laboratory before preparation of aqueous extract. It was found to be significantly different in size from each other. The electrical conductivity of the biological extract was recorded through a conductometer. For this purpose, the extract of different parts of the I. pes-caprae plants was prepared, followed by heating and filtration, while silver nitrate (AgNO3) was used as a precipitating agent. It was interesting to note that when filtrate was titrated with AgNO3, the precipitate started to settle down. Results showed the lowest iodine concentration in the flowers of all tested plants, followed by the highest in the leaves. Conductometric precipitation reaction was influential in determining iodine in herbal medicinal plants. It was observed that the size of the plants and collection sites impacted the iodine concentration. It was lowest in I. pes-caprae, collected from sea view Karachi, while highest in plants of Hawksbay. The endpoint of this biochemical reaction was taken when conductivity started rising. The standard curve of KI was prepared to determine the concentration of iodine in plant samples through conductometric titration. Moreover, the presence of Iodine was confirmed through a chemical testing method using HNO3, NH4OH, and H2SO4, after a complete precipitation reaction. The iodine quantification was done using a spectrophotometer through hexane solvent after being treated with H2SO4.
The examination of a drug in water and other aqueous systems gives insight into the chemistry of biological systems. This work aims to study the physico-chemical properties of chlorpheniramine maleate (drug) in water and aq-MeOH/EG (mono/dihydric alcohols) systems at different temperatures by using different techniques. Densities and viscosities of chlorpheniramine maleate in water and also in MeOH/EG aqueous solutions have been measured over a temperature range of 298.15 to 318.15 K. Number of several parameters, i.e., apparent molar volume (ϕv), partial molar volume (ϕvo), Hepler’s constant (∂CΡ/∂Ρ)T, Falkenhagen coefficient (A), and Jones-Dole coefficient (B) have been calculated by using experimentally measured density and viscosity values. The mentioned calculated parameters were found to be valuable in perceiving drug-drug and drug-solvent interactions. Moreover, one of the liquid chromatographic techniques such as RP-HPLC has also been performed, and the outcomes supported the conclusion procured from the volumetric and viscometric studies. Drug interactions help to understand their behavior in different solvent systems during drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.