Composite materials are increasingly used in applications of civil infrastructure and building materials. The new generations of two-part thermoset polyurethane resin systems are desirable materials for infrastructure applications. This is due to high impact resistance, superior mechanical properties, and reduced volatile organic compounds when compared to the conventionally used resin systems such as vinyl ester and polyester. Glass fiber-reinforced two-part polyurethane composites and low-density polyurethane foam are used to design and manufacture composite structural insulation panels using vacuum assisted resin transfer molding process for temporary housing applications. Using these types of composite panels in building construction will result in cost-efficient, high-performance products due to inherent advantages in design flexibility. Use of core-filled composite structures offers additional benefits such as high strength, stiffness, lower structural weight, ease of installation and structure replacement, and higher buckling resistance than the conventional panels. Energy efficiency is known to be inherently better with the core-filled composite panel than in a metallic material. The panels can be designed to resist the required loads, and the study aims to evaluate the ability of lab scale tests and models to predict part quality in full-scale parts. Furthermore, it discusses the manufacturing challenges. Flexural tests and energy consumption evaluations were performed on these structural components. Finite element simulation results were used to validate the flexural experiment findings.
Purpose Honeycomb cellular structures exhibit unique mechanical properties such as high specific strength, high specific stiffness, high energy absorption and good thermal and acoustic performance. This paper aims to use numerical modeling to investigate the effective elastic moduli, in-plane and out-of-plane, for thick-walled honeycombs manufactured using selective laser melting (SLM). Design/methodology/approach Theoretical predictions were performed using homogenization on a sample scale domain equivalent to the as-manufactured dimensions. A Renishaw AM 250 machine was used to manufacture hexagonal honeycomb samples with wall thicknesses of 0.2 to 0.5 mm and a cell size of 3.97 mm using 304 L steel powder. The SLM-manufactured honeycombs and cylindrical test coupons were tested using flatwise and edgewise compression. Three-dimensional finite element and strain energy homogenization were conducted to determine the effective elastic properties, which were validated by the current experimental outcomes and compared to analytical models from the literature. Findings Good agreement was found between the results of the effective Young’s moduli ratios numerical modeling and experimental observations. In-plane effective elastic moduli were found to be more sensitive to geometrical irregularity compared to out-of-plane effective moduli, which was confirmed by the analytical models. Also, it was concluded that thick-walled SLM manufactured honeycombs have bending-dominated in-plane compressive behavior and a stretch-dominated out-of-plane compressive behavior, which matched well with the simulation and numerical models predictions. Originality/value This work uses three-dimensional finite element and strain energy homogenization to evaluate the effective moduli of SLM manufactured honeycombs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.