In recent years, palmprint recognition has gained increased interest and has been a focus of significant research as a trustworthy personal identification method. The performance of any palmprint recognition system mainly depends on the effectiveness of the utilized feature extraction approach. In this paper, we propose a three-step approach to address the challenging problem of contactless palmprint recognition: (1) a pre-processing, based on median filtering and contrast limited adaptive histogram equalization (CLAHE), is used to remove potential noise and equalize the images’ lighting; (2) a multiresolution analysis is applied to extract binarized statistical image features (BSIF) at several discrete wavelet transform (DWT) resolutions; (3) a classification stage is performed to categorize the extracted features into the corresponding class using a K-nearest neighbors (K-NN)-based classifier. The feature extraction strategy is the main contribution of this work; we used the multiresolution analysis to extract the pertinent information from several image resolutions as an alternative to the classical method based on multi-patch decomposition. The proposed approach was thoroughly assessed using two contactless palmprint databases: the Indian Institute of Technology—Delhi (IITD) and the Chinese Academy of Sciences Institute of Automatisation (CASIA). The results are impressive compared to the current state-of-the-art methods: the Rank-1 recognition rates are 98.77% and 98.10% for the IITD and CASIA databases, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.