In recent years, biochar application to soil has become more popularized due to its potential roles on soil fertility, plant growth, and development. In this review, we discussed the impact of biochar on the relative abundance of soil proteobacteria and its relationship with soil physiochemical properties under different rhizospheres. It was observed that biochar applied to different soil improved proteobacteria, and its lowest and highest relative abundance was ranged from 30-80%, respectively. A positive relationship of soil proteobacteria with soil pH, total nitrogen, available phosphorous, available potassium, total carbon were observed in several studies. Both the relative abundance of proteobacteria and its relationship with soil properties depend on biochar type, soil type, and fertilizers applied to the soil. Most of the ammonia-oxidizing bacteria including nitrogen-fixing bacteria, ammonia-oxidizing bacteria, cellulose-decomposing bacteria, nitrifying bacteria, and denitrifying bacteria belong to proteobacteria, which plays a significant role in nitrogen recycling that is beneficial for the plant growth, yield and fruits/seeds quality. Furthermore, a positive relationship between soil proteobacteria and plant yield was also highlighted. In this context, the use of biochar plays a potential role to improve the relative abundance of proteobacteria in sustainable agriculture. We highlighted future research guidelines that might benefit the sustainable agricultural system. Moreover, further studies are needed to explore the potential role of biochar application on Proteobaceria families such as Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, and Epsilonproteobacteria.
The Loess Hilly–Gully region (LHGR) is the most serious soil erosion area in the world. For the small watershed with high management in this area, the scientific problem that has been paid attention to in recent years is the impact of the land consolidation project on the erosion environment in the gully region. In this study, the 3D simulation method of vegetation, eroded sediment and pollutant transport was innovated based on the principles of erosion sediment dynamics and similarity theory, and the impacts of GLCP were analyzed on the erosion environment at different scales. The verification results show that the design method and the scale conversion relationship (geometric scale: λl = 100) were reasonable and could simulate the transport process on the complex underlying surface of a small watershed. Compared with untreated watersheds, a significant change was the current flood peak lagging behind the sediment peak. There were two important critical values of GLCP impact on the erosion environment. The erosion transport in HMSW had no change when the proportion was less than 0.85%, and increased obviously when it was greater than 3.3%. The above results have important theoretical and practical significance for watershed simulation and land-use management in HMSW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.