In this study, polybutylene succinate (PBS) was blended with five types of modified tapioca starch to investigate the effect of modified tapioca starch in PBS blends for food packaging by identifying its properties. Tensile and flexural properties of blends found deteriorated for insertion of starch. This is due to poor interface, higher void contents and hydrolytic degradation of hydrophilic starch. FTIR results show all starch/PBS blends are found with footprints of starch except OH stretching vibration which is absent in B40 blends. Besides, Broad O–H absorption in all specimens show that these are hydrogen bonded molecules and no free O–H bonding was found. SEM testing shows good interfacial bonding between PBS and starch except E40 blends. Therefore, poor results of E40 blends was expected. In TGA, a slightly weight loss found between 80 to 100 °C due to free water removal. Apart from this, insertion of all types of starch reduces thermal stability of blend. However, high crystallinity of starch/PBS blend observed better thermal stability but lower char yield. Starch A and B blends are suggested to be used as food wrap and food container materials while starch D blend is suitable for grocery plastic bags according to observed results.
In this study, a mixture of thermoplastic polybutylene succinate (PBS), tapioca starch, glycerol and empty fruit bunch fiber was prepared by a melt compounding method using an industrial extruder. Generally, insertion of starch/glycerol has provided better strength performance, but worse thermal and water uptake to all specimens. The effect of fiber loading on mechanical, morphological, thermal and physical properties was studied in focus. Low interfacial bonding between fiber and matrix revealed a poor mechanical performance. However, higher fiber loadings have improved the strength values. This is because fibers regulate good load transfer mechanisms, as confirmed from SEM micrographs. Tensile and flexural strengths have increased 6.0% and 12.2%, respectively, for 20 wt% empty fruit bunch (EFB) fiber reinforcements. There was a slightly higher mass loss for early stage thermal decomposition, whereas regardless of EFB contents, insignificant changes on decomposition temperature were recorded. A higher lignin constituent in the composite (for high natural fiber volume) resulted in a higher mass residue, which would turn into char at high temperature. This observation indirectly proves the dimensional integrity of the composite. However, as expected, with higher EFB fiber contents in the composite, higher values in both the moisture uptake and moisture loss analyses were found. The hydroxyl groups in the EFB absorbed water moisture through formation of hydrogen bonding.
In this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion. Higher EFB fibre contents in films resulted lower mechanical properties due to poor fibre wetting from insufficient matrix. This has also found evident in SEM micrograph, showing poor interfacial bonding. Water vapour permeability (WVP) shows as higher hydrophilic EFB fibre reinforcement contents, the rate of WVP also increase. Besides this, little or no significant changes on thermal properties for composite films. This is because high thermal stability PBS polymer show its superior thermal properties dominantly. Even though EFB fibres insertion into PBS/tapioca starch biocomposite films have found lower mechanical properties. It successfully reduced the cost of mulch film production without significant changes of thermal performances. open Scientific RepoRtS | (2020) 10:1166 | https://doi.
7000 years ago, miswak fiber (MF) was used as a toothbrush for oral care. However, since the emergence of plastic materials, it monopolized the oral care industry. The increment of plastic products also promotes accumulation of plastic wastes after its disposal. Thus, many researchers have turn to biodegradable products to reduce this problem. The aim of this study is to investigate the chemical, physical, and mechanical properties of MF as reinforcement in composites that are suitable to replace the toothbrush materials. The MF was reinforced in PLA composite with different weight percentage (0%, 10%, 20%, and 30%) and undergoes several types of testing. The chemical results show that there were high presence of cellulose in the fiber which could act as medium to transfer stress load equally from fiber to matrix. However, the results show low cellulosic contents in MF that affects the poor interfacial bonding between fiber and matrix. Physical properties shows a positive indication to be used as a toothbrush handle. As the fiber content increases, the density also increased. SEM micrographic illustrated the presence of voids as the cause for reduction in mechanical properties of composites. The mechanical results show the proposed material is comparable to the materials used in commercial applications. As for the thermal result, the TGA test melting point of the proposed composite material was comparable to the pure PLA, which means the proposed material can use similar processing temperature as PLA. DSC shows that Tg of PLA/MF composite is found to be similar to Tg in loss modulus of composites. DMA finding found that PLA/MF30 have the highest storage modulus 2062 MPa and the lowest tan δ 0.6 among PLA/MF composites. This concludes that there is a possibility of using these materials as an alternative in composites and increase the fiber strength by using pretreatments and/or compatibilizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.